首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wo  Xiaoman  Yuan  Yuan  Xu  Yong  Chen  Yang  Wang  Yao  Zhao  Shuoxuan  Lin  Lexun  Zhong  Xiaoyan  Wang  Yan  Zhong  Zhaohua  Zhao  Wenran 《中国病毒学》2021,36(1):95-103
Enterovirus A71(EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease(HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43(TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis(ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3 C between the residues 331 Q and332 S, while mutated TDP-43(Q331 A) was not cleaved. In addition, mutated 3 C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2 A rather than 3 C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71 infection.  相似文献   

2.
Identification of novel cellular proteins as substrates to viral proteases would provide a new insight into the mechanism of cell–virus interplay. Eight nuclear proteins as potential targets for enterovirus 71 (EV71) 3C protease (3Cpro) cleavages were identified by 2D electrophoresis and MALDI-TOF analysis. Of these proteins, CstF-64, which is a critical factor for 3′ pre-mRNA processing in a cell nucleus, was selected for further study. A time-course study to monitor the expression levels of CstF-64 in EV71-infected cells also revealed that the reduction of CstF-64 during virus infection was correlated with the production of viral 3Cpro. CstF-64 was cleaved in vitro by 3Cpro but neither by mutant 3Cpro (in which the catalytic site was inactivated) nor by another EV71 protease 2Apro. Serial mutagenesis was performed in CstF-64, revealing that the 3Cpro cleavage sites are located at position 251 in the N-terminal P/G-rich domain and at multiple positions close to the C-terminus of CstF-64 (around position 500). An accumulation of unprocessed pre-mRNA and the depression of mature mRNA were observed in EV71-infected cells. An in vitro assay revealed the inhibition of the 3′-end pre-mRNA processing and polyadenylation in 3Cpro-treated nuclear extract, and this impairment was rescued by adding purified recombinant CstF-64 protein. In summing up the above results, we suggest that 3Cpro cleavage inactivates CstF-64 and impairs the host cell polyadenylation in vitro, as well as in virus-infected cells. This finding is, to our knowledge, the first to demonstrate that a picornavirus protein affects the polyadenylation of host mRNA.  相似文献   

3.
Enterovirus 71 (EV71) is the most important etiological agent of hand, foot, and mouth disease (HFMD) in young children, which is associated with severe neurological complications and has caused significant mortalities in recent HFMD outbreaks in Asia. However, there is no effective antiviral therapy against EV71. In this study, RNA interference (RNAi) was used as an antiviral strategy to inhibit EV71 replication. Three small interfering RNAs (siRNAs) targeting the 2Apro region of the EV71 genome were designed and synthesized. All the siRNAs were transfected individually into rhabdomyosarcoma (RD) cells, which were then infected with strain EV71-2006-52-9. The cytopathic effects (CPEs) in the infected RD cells, cell viability, viral titer, and viral RNA and protein expression were examined to evaluate the specific viral inhibition by the siRNAs. The results of cytopathogenicity and MTT tests indicated that the RD cells transfected with the three siRNAs showed slight CPEs and significantly high viability. The 50% tissue culture infective dose (TCID50) values demonstrated that the viral titer of the groups treated with three siRNAs were lower than those of the control groups. qRT–PCR and western blotting revealed that the levels of viral RNA and protein in the RD cells treated with the three siRNAs were lower than those in the controls. When RD cells transfected with siRNAs were also infected with strain EV71-2008-43-16, the expression of the VP1 protein was significantly inhibited. The levels of interferon α (IFN-α) and IFN-β did not differ significantly in any group. These results suggest that siRNAs targeting the 2Apro region of the EV71 genome exerted antiviral effects in vitro.  相似文献   

4.
5.
The need for replacing traditional pesticides with alternative agents for the management of agricultural pathogens is rising worldwide. In this study, a cysteine proteinase inhibitor (CPI), 11 kDa in size, was purified from green kiwifruit to homogeneity. We examined the growth inhibition of three plant pathogenic Gram-negative bacterial strains by kiwi CPI and attempted to elucidate the potential mechanism of the growth inhibition. CPI influenced the growth of phytopathogenic bacteria Agrobacterium tumefaciens (76.2 % growth inhibition using 15 μM CPI), Burkholderia cepacia (75.6 % growth inhibition) and, to a lesser extent, Erwinia carotovora (44.4 % growth inhibition) by inhibiting proteinases that are excreted by these bacteria. Identification and characterization of natural plant defense molecules is the first step toward creation of improved methods for pest control based on naturally occurring molecules.  相似文献   

6.
ABSTRACT We investigated the effect of a cysteine proteinase inhibitor (E-64) and an aspartyl proteinase inhibitor (Pepstatin A) on asexual erythrocytic stages of Plasmodium falciparum in culture. These two protease inhibitors showed different patterns of activity. E-64 acted preferentially against trophozoite and schizont stages. After 48 h incubation at high concentrations of E-64 (28, 140, 280 μM), growth was totally abolished and the parasites presented characteristic enlarged food vacuoles. Morphological alterations were also seen after shorter incubation periods (6 h at 28 μM) or 12 h at the inhibitory concentration 50% (12 μM), but an additional culture period (24 h) in inhibitor-free medium allowed normal parasite development, demonstrating a parasitostatic effect. E-64 acts on parasite multiplication; the normal merozoite maturation was altered and the normal reinvasion process partially impaired. Pepstatin A used at the inhibitory concentration 50% (4 μM) killed the parasites before trophozoite development and had a major effect on schizonts maturation. No altered parasite development occurred during an additional culture period without Pepstatin A, demonstrating a parasiticidal effect. E-64 and Pepstatin A used in combination inhibit the parasite growth with a strong synergistic effect.  相似文献   

7.
Highlights
1. The N-terminal tail of histone H3 is specifically cleaved during EV71 infection.
2. Viral protease 3C is identified as a protease responsible for proteolytically processing the N-terminal H3 tail.
3. Our finding reveals a new epigenetic regulatory mechanism for Enterovirus 71 in virus-host interactions.  相似文献   

8.
Chen L  Yang ZJ  Zhou Z  Cai WT  Teng XZ  Zhang GX 《病毒学报》2012,28(3):195-200
本研究利用大肠杆菌表达系统构建肠道病毒71型3C蛋白酶,并进行纯化,对其酶活性进行研究。首先,将3C蛋白酶基因克隆至pET28a载体,在大肠杆菌BL21(DE3)中表达,Ni-NTA柱亲和层析纯化获得3C蛋白酶,经肠激酶酶切去除N端His标签后获得无His标签的3C蛋白酶,再以荧光多肽为底物进行酶活性研究。经过双酶切鉴定和测序证实,重组表达质粒pET28a-3C构建正确,表达的重组3C蛋白酶相对分子质量约22kD;纯化后有无His标签的3C蛋白酶均能催化荧光底物3B-3C,并且两者的酶动力学数据无显著差异,含有His标签的3C蛋白酶Km、Vmax、Kcat分别为22μM、434nM.Min-1、0.0669 Min-1;其最适反应pH为7.0,最佳反应温度为30℃~37℃。本实验成功表达并纯化了重组3C蛋白酶,该酶具有良好的活力,为抗病毒抑制剂、结构蛋白组装、疫苗开发及3C蛋白酶检测方法的研发奠定了基础。  相似文献   

9.
10.
Resistance to hepatitis C virus (HCV) inhibitors targeting viral enzymes has been observed in in vitro replicon studies and during clinical trials. The factors determining the emergence of resistance and the changes in the viral quasispecies population under selective pressure are not fully understood. To assess the dynamics of variants emerging in vitro under various selective pressures with TMC380765, a potent macrocyclic HCV NS3/4A protease inhibitor, HCV genotype 1b replicon-containing cells were cultured in the presence of a low, high, or stepwise-increasing TMC380765 concentration(s). HCV replicon RNA from representative samples thus obtained was analyzed using (i) population, (ii) clonal, and (iii) 454 deep sequencing technologies. Depending on the concentration of TMC380765, distinct mutational patterns emerged. In particular, culturing with low concentrations resulted in the selection of low-level resistance mutations (F43S and A156G), whereas high concentrations resulted in the selection of high-level resistance mutations (A156V, D168V, and D168A). Clonal and 454 deep sequencing analysis of the replicon RNA allowed the identification of low-frequency preexisting mutations possibly contributing to the mutational pattern that emerged. Stepwise-increasing TMC380765 concentrations resulted in the emergence and disappearance of multiple replicon variants in response to the changing selection pressure. Moreover, two different codons for the wild-type amino acids were observed at certain NS3 positions within one population of replicons, which may contribute to the emerging mutational patterns. Deep sequencing technologies enabled the study of minority variants present in the HCV quasispecies population present at baseline and during antiviral drug pressure, giving new insights into the dynamics of resistance acquisition by HCV.Chronic hepatitis C virus (HCV) infection can lead to liver fibrosis, cirrhosis, hepatocellular carcinoma, and ultimately liver failure. Approximately 170 million people worldwide are infected with HCV (54a). The current standard of care consists of pegylated alpha interferon (Peg-IFN) plus ribavirin (RBV), providing limited efficacy for genotype 1-infected patients, i.e., a sustained virological response (SVR) in 40 to 50% of the patients. Moreover, Peg-IFN/RBV therapy is associated with significant adverse events (9). Therefore, direct antiviral agents (DAA) (previously also known as “specifically targeted antiviral therapies for hepatitis C” or STAT-C) have been a major focus of drug discovery efforts over the last 2 decades. Several NS3/4A (protease), NS5A, and NS5B (polymerase) inhibitors either alone or in combination with Peg-IFN/RBV have recently shown potent antiviral effects in HCV-infected patients (22, 36). However, viral resistance to these novel agents can occur rapidly when they are dosed as monotherapy (43, 49).Because of the high mutation rate of the HCV polymerase (10−3 to 10−5 misincorporations per nucleotide copied [11]) and the high viral production rates in vivo (approximately 1012 viruses per patient per day [37]), it can be assumed that HCV exists as a diverse population of nonidentical but closely related viral genomes, referred to as a quasispecies (10). A viral quasispecies is characterized by a dominant nucleotide sequence, called a master sequence, and a surrounding mutant spectrum, which can harbor minority subpopulations (42). Although in theory all single and double mutants are produced daily in an infected person (6, 40), it is important to note that mutation rates are not equally distributed over the entire genome and that additional factors, such as viral fitness and the replication environment, determine whether a mutation becomes fixed in a viral quasispecies population (12). The diversity of the viral variants present in an infected individual facilitates the adaptation of the quasispecies to external pressure, such as antiviral treatment, improving the survival chances of the population (53). The speed of such adaptation depends mainly on the turnover of the viral nucleic acid acting as a source of new viral genomes. Whereas in HIV the rapid turnover of infected CD4+ T lymphocytes is responsible for the rapid turnover of nucleic acids, in HCV rapid turnover is explained by the short half-life (∼10 h) of HCV RNA strands in the hepatocyte (47). However, if mutation rates exceed a certain limit, called the error threshold, deleterious mutations will accumulate and the viral population will become extinct (4).Recent reports have demonstrated that mutations known to affect the activities of DAA compounds in vitro are present in some treatment-naive patients as either dominant or minority species (6, 13, 19, 21, 27). With the eradication of variants susceptible to the antiviral drugs, resistant viruses initially present as minority species may expand to occupy the freed replicative space, thus becoming the dominant master sequence (1); this may lead to failure of the antiviral regimen. In HIV it has been shown that minority species can play an important role in the accelerated evolution toward resistance to antiretroviral drugs (5). The extent to which preexisting HCV variants may compromise treatment with DAAs, however, is not yet fully understood (3). Depending on the concentration of the antiviral agent, different resistance profiles seem to emerge. In clinical studies, a correlation was noted between the plasma trough levels of the NS3/4A inhibitor telaprevir, the virological response, and the mutations responsible for the drug-resistant phenotype (43). In patients with a low exposure to telaprevir, variants carrying mutations with low resistance to telaprevir in vitro were observed, while higher drug levels were associated with variants conferring a greater degree of resistance in vitro. Correlations between the inhibitor concentration and the mutation profile were also described in in vitro studies (44, 50, 51).HCV replicon cell culture systems have been widely used to characterize resistance against antiviral inhibitors and to assess the impact of resistance mutations on drug susceptibility and replication fitness in vitro (8, 15). Although the information on resistance mutations observed with DAA during clinical trials is still limited, mutations identified in vitro appear to be predictive for those mutations that may emerge in patients (17, 20). In addition, analysis of the genetic variability and diversity of a long-term HCV replicon-containing cell culture has shown that mutations accumulate over time at rates comparable to those observed in vivo: (3.5 to 4.8) × 10−3 in vitro versus (1.4 to 1.9) × 10−3 in vivo base substitutions/site/year (16). Hence, HCV replicon systems are considered a useful and relevant surrogate system for analyzing the evolutionary dynamics and variations of HCV in response to selection pressure.The detailed study of the dynamics of viral variants present in a quasispecies population has long been hampered by the lack of sensitive sequencing methods. The recent development of deep sequencing technologies may facilitate a better understanding of the genetic composition and natural evolution of viral quasispecies in the presence of antiviral drugs (30, 34, 54). Indeed, studies of HIV suggest that these more-sensitive sequencing technologies detect additional minority variants for both treatment-naive and treatment-experienced patients which could impact the clinical outcome of antiretroviral therapy and may provide important information for treatment planning (2, 23, 41, 46).TMC380765 (Fig. (Fig.1)1) is a macrocyclic inhibitor of the HCV NS3/4A protease and a potent inhibitor of HCV RNA replication in vitro, with median 50% effective concentration (EC50) and 90% effective concentration (EC90) values of 35 nM and 106 nM, respectively, in the Huh7-Luc replicon using a luciferase readout (25, 39). Other examples of macrocyclic NS3/4A inhibitors include BILN-2061, ITMN-191, MK7009, and TMC435. To assess the effect of its selective pressure on the composition of the replicon population, selection experiments were performed with different concentrations of TMC380765 and sequence changes were determined with population, clonal, and 454 deep sequencing technologies.Open in a separate windowFIG. 1.Structural formulae of TMC380765.  相似文献   

11.
肠道病毒71型(Enterovirus 71,EV71)为小RNA病毒科肠道病毒属A组病毒的代表株,感染可引发手足口病(Hand-foot and mouth disease,HFMD),严重危害儿童健康.EV71 3C蛋白酶(3C)是其编码的主要蛋白酶之一,在病毒多蛋白加工过程中发挥关键作用,同时切割细胞蛋白以利于病毒复制.为进一步了解EV71与宿主间博弈关系,本课题组前期以3C为诱饵进行酵母双杂交实验,筛选与3C发生相互作用的可能底物,钓取到锌指MYM型蛋白2(Zinc finger MYM-type protein 2,ZMYM2).ZMYM2是一种具有锌指结构的转录因子,与细胞中重要的抗病毒小体PML核体(PML nuclear bodies,PML-NBs)的形成及稳定性相关.本文选择3C与ZMYM2关系展开研究,确证二者相互作用并初探生物学功能.首先通过免疫共沉淀实验确证3C与ZMYM2之间存在相互作用;随后分析功能,发现过表达ZMYM2抑制EV71复制;敲减内源ZMYM2有利于EV71的复制;分析3C对ZMYM2影响,发现3C剂量依赖性切割ZMYM2,ZMYM2上至少具有2个3C的识别位点.本研究为解析ZMYM2功能及进一步了解EV71与宿主先天免疫间博弈关系提供了新的实验证据.  相似文献   

12.
利用肠道病毒71型(EV71)衣壳蛋白优势表位肽段构建融合蛋白抗原能有效抑制病毒感染,有望成为继灭活病毒后更为安全有效的疫苗品种。该融合蛋白能通过原核体系有效表达但形成无序包涵体,采用常规层析介质难以实现目标蛋白与宿主杂质的有效分离,阻碍了对该抗原蛋白进行全面临床前活性及安全性评价。在原有融合蛋白抗原N端插入组氨酸标签,对形成的包涵体变性溶解后直接采用镍金属螯合亲和介质进行分离纯化,获得了纯度大于95%的抗原纯品,目标蛋白收率46.8%。采用透析方式脱除纯化样品中高浓度脲,发现直接透析至无脲的缓冲液中蛋白质大量沉淀,而先稀释至2mol/L脲的缓冲液中然后用G25脱盐柱完全脱除脲则无任何沉淀形成,获得近100%的蛋白质收率。透射电镜分析最终样品发现融合蛋白形成了10nm左右粒径均一的类病毒蛋白颗粒,且在pH 8.0的磷酸盐缓冲液中保持稳定。该研究结果为将EV71融合蛋白抗原发展为安全有效且低成本的手足口疫苗奠定了基础。  相似文献   

13.
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms.  相似文献   

14.
15.
16.
Some strains of enterovirus 71 (EV71), but not others, infect leukocytes by binding to a specific receptor molecule: the P-selectin glycoprotein ligand-1 (PSGL-1). We find that a single amino acid residue within the capsid protein VP1 determines whether EV71 binds to PSGL-1. Examination of capsid sequences of representative EV71 strains revealed that the PSGL-1-binding viruses had either a G or a Q at residue 145 within the capsid protein VP1 (VP1-145G or Q), whereas PSGL-1-nonbinding viruses had VP1-145E. Using site-directed mutagenesis we found that PSGL-1-binding strains lost their capacity to bind when VP1-145G/Q was replaced by E; conversely, nonbinding strains gained the capacity to bind PSGL-1 when VP1-145E was replaced with either G or Q. Viruses with G/Q at VP1-145 productively infected a leukocyte cell line, Jurkat T-cells, whereas viruses with E at this position did not. We previously reported that EV71 binds to the N-terminal region of PSGL-1, and that binding depends on sulfated tyrosine residues within this region. We speculated that binding depends on interaction between negatively charged sulfate groups and positively charged basic residues in the virus capsid. VP1-145 on the virus surface is in close proximity to conserved lysine residues at VP1-242 and VP1-244. Comparison of recently published crystal structures of EV71 isolates with either Q or E at VP1-145 revealed that VP1-145 controls the orientation of the lysine side-chain of VP1-244: with VP1-145Q the lysine side chain faces outward, but with VP1-145E, the lysine side chain is turned toward the virus surface. Mutation of VP1-244 abolished virus binding to PSGL-1, and mutation of VP1-242 greatly reduced binding. We propose that conserved lysine residues on the virus surface are responsible for interaction with sulfated tyrosine residues at the PSGL-1 N-terminus, and that VP1-145 acts as a switch, controlling PSGL-1 binding by modulating the exposure of VP1-244K.  相似文献   

17.
An understanding of the mechanisms of virologic cross-resistance between human immunodeficiency virus type 1 protease inhibitors is important for the establishment of effective treatment strategies for patients who no longer respond to their initial protease inhibitor. Protease gene sequencing results from patients treated with saquinavir showed significant increases in the frequency of the G48V protease mutation in patients receiving higher doses of the drug. In addition, all six patients who developed the G48V mutation during saquinavir therapy developed the V82A mutation either on continued saquinavir or after a switch to nelfinavir or indinavir. In vitro susceptibility assays showed that all 13 isolates with reduced susceptibilities to two or more protease inhibitors had either the G48V or L90M mutation, along with an average of six other protease mutations. Reduced susceptibility to nelfinavir was found in 14 isolates, but only 1 possessed the D30N mutation. These results suggest that mutations selected in vivo by initial saquinavir therapy may provide more cross-resistance to the other protease inhibitors than has been previously reported.  相似文献   

18.
目的用1日龄ICR小鼠传代制备EV71小鼠适应株,研究EV71亲代株与小鼠适应株的体内外感染特点,建立EV71感染ICR小鼠动物模型,为病毒疫苗和抗病毒药物的研究提供实用的动物评价工具。方法用1日龄ICR小鼠进行EV71病毒(Fuyang-0805)的传代,得到小鼠传代株。以一定浓度亲代株和传代株病毒分别接种RD、Vero、SY5Y、Caco-2四种细胞,定量方法检测各时间点不同毒株在四种细胞上的复制数量,CCK8方法测定各时间点细胞的存活率;同时,两毒株分别腹腔注射感染1日龄小鼠,定期安乐死动物,采集肺、小肠、骨骼肌、大脑四种器官组织,进行动物体内病毒半定量和定量分析,同时进行各器官组织病理学观察、免疫组织化学鉴定。结果与亲代毒株相比较,小鼠传代株(EV71-MMP4)表现出更强的肌肉来源细胞嗜性与毒性;同时,两毒株腹腔注射感染1日龄小鼠后,EV71-MMP4感染的小鼠体重增长较正常小鼠体重增长缓慢;半定量和定量RT-PCR显示,在小鼠肌肉中的病毒载量于感染后1d和5d达到高峰。EV71-MMP4感染组感染率较高、病毒组织分布较广、感染持续性较好、病毒载量较高,高剂量病毒感染后小鼠小肠、心肌和骨骼肌可观察到细胞空泡变性、淋巴细胞浸润等病理变化。免疫组织化学显示感染后小鼠骨骼肌有EV71病毒特异分布。结论阜阳EV71小鼠适应株表现出较亲代毒株更好的小鼠易感性、细胞毒性,所建立的动物模型可用于EV71病毒致病机制、感染特点的研究和病毒疫苗及药物的评价。  相似文献   

19.
肠道病毒71型(EV71)的非结构蛋白2C(P2C)在病毒复制周期中起着重要的作用,制备P2C的特异性抗体,对研究P2C的生物学功能以及EV71与宿主相互作用的具体机制有非常重要的意义。实验将2C基因克隆到原核表达载体p ET-28a(+)上,在大肠埃希菌BL21(DE3)中表达出重组蛋白r P2C,进一步优化原核表达条件,在温度为30℃,诱导剂IPTG浓度为1 mmol/L时,蛋白表达量最高,且主要以包涵体形式存在。直接将获得的r P2C通过SDS-PAGE分离后免疫新西兰兔,制备EV71病毒P2C的兔多克隆抗体。通过Western blot检测,该抗体在110 000稀释比例下仍能很好地识别原核表达的r P2C。同时该抗体也能很好地检测到EV71感染RD细胞中的P2C。因此,实验制备出的抗P2C抗体特异性强、效价高,为后续P2C功能的研究以及EV71病毒检测提供了良好的材料。  相似文献   

20.
肠道病毒71型的研究进展   总被引:34,自引:0,他引:34  
周世力  杨帆  金奇 《病毒学报》2003,19(3):284-287
肠道病毒71型(enterovirus71,EV71)是小RNA病毒科(Picornaviridae)肠道病毒属(Enterovirus)成员,其感染主要引起患者手足口病(hand-foot-and-mouth disease,HFMD).通常情况下,EV71感染引起的HFMD在临床症状等方面与柯萨奇病毒A16(Coxsackie A16,CA16)引起的手足口病难以区别,但EV71感染除了引起HFMD以外,还能够引起无菌性脑膜炎(aseptic meningitis)、脑干脑炎(brainstem encephalitis)和脊髓灰质炎样的麻痹(poliomyelitis-like paralysis)等多种与神经系统相关的疾病[1].自1974年首次报道[2]以来,EV71已在世界范围内引起十多次爆发与流行[3-6].近年来,EV71病毒的流行在亚太地区呈上升趋势[7-9].根据病毒衣壳蛋白VP1核苷酸序列的差异,可将EV71分为A、B、C 3个基因型,其中,B型和C型又进一步分为B1、B2、B3、B4以及C1和C2亚型[10-12].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号