首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Climate change is a grave danger for humans and a looming threat to Earth's biodiversity in the twenty-first century. Assessing the vulnerability of species to climate change is critical for practical conservation efforts. Due to their limited dispersal ability, amphibians are one of the most vulnerable groups of vertebrates to climate change. Among them, the species that inhabit mountains suffer a tremendous amount of climate change-induced pressures. We, therefore, adopted the Azerbaijan Mountain Newt (Neurergus crocatus), which currently inhabits Northwest Iran, North Iraq, and Southeast Turkey, as a case study for assessing the effects of climate change on the distribution patterns of mountain amphibians. By applying the species distribution models (SDMs) in this study, we tried to hindcast the species distribution area in the past and illustrate the impacts of climate change on its distribution in the present and future (the 2050s and 2070s) climate conditions. Also, the patch metrics have been deployed for identifying habitat fragmentation. Our results indicate a more than 50% rise in the species’ current suitable habitats compared to its glacial refugia. The suitable habitat is expected to gradually decrease in RCP 2.6 and RCP 8.5. Among the three countries in which the species occurs, its distribution overlaps with protected areas only in Iraq. The number of habitat patches will grow and reach approximately 20 to 60 patches by 2070 and the average area of the patches will decrease throughout this time. Aside from the numerous threats that endanger the species, climate change puts the long-term existence of Azerbaijan Newt in jeopardy. The results of this study stress the urgent need for taking extreme measures on the species management and conserving its remnant habitat patches.  相似文献   

2.
Horizontal gene transfer involves the non-sexual interspecific transmission of genetic material. Even if they are initially functional, horizontally transferred genes are expected to deteriorate into non-expressed pseudogenes, unless they become adaptively relevant in the recipient organism. However, little is known about the distributions of natural transgenes within wild species or the adaptive significance of natural transgenes within wild populations. Here, we examine the distribution of a natural plant-to-plant nuclear transgene in relation to environmental variation within a wild population. Festuca ovina is polymorphic for an extra (second) expressed copy of the nuclear gene (PgiC) encoding cytosolic phosphoglucose isomerase, with the extra PgiC locus having been acquired horizontally from the distantly related grass genus Poa. We investigated variation at PgiC in samples of F. ovina from a fine-scale, repeating patchwork of grassland microhabitats, replicated within spatially separated sites. Even after accounting for spatial effects, the distributions of F. ovina individuals carrying the additional PgiC locus, and one of the enzyme products encoded by the locus, are significantly associated with fine-scale habitat variation. Our results suggest that the PgiC transgene contributes, together with the unlinked ‘native’ PgiC locus, to local adaptation to a fine-scale mosaic of edaphic and biotic grassland microhabitats.  相似文献   

3.
Ephedra sinica is a rare and vulnerable species in China, and the habitat of Ephedra sinica is seriously threatened (by climate change and human activities). Predicting the suitable growth areas and constructing ecological corridors for Ephedra sinica in China will help to protect it scientifically. Based on 306 valid distribution records and 13 selected environmental factors, the maximum entropy (MaxEnt) model was used to simulate the potential current habitat zones and future (2050 and 2070) habitat zones of Ephedra sinica under four climate change scenarios. The minimum cumulative resistance (MCR) model was applied to extract important ecological corridors of Ephedra sinica. The results indicate that: (1) Under the current environment, the total area of the suitable habitat for Ephedra sinica in China is 42.24 × 105 km2, mainly distributed in Northwest China and North China. (2) Suitable area increases as the RCP rises. The center of mass of the habitat zone moved northward from Shaanxi Province to Ordos City in Inner Mongolia Autonomous Region. (3) Of the 13 environmental factors selected, the primary factor was elevation (20.8 %), followed by wettest month precipitation (18.2 %) and temperature seasonality (15.2 %). (4) Built 19 ecological corridors, with a total corridor length of 430.2 km, including seven long-distance passages and 12 short-distance corridors. All corridors are far from the artificial surface, mostly near high-altitude areas. The 19 ecological corridors constructed using the MCR model will also provide considerable importance for the survival of Ephedra sinica on a longer time scale in the future.  相似文献   

4.
The upsurge in anthropogenic climate change has accelerated the habitat loss and fragmentation of wild animals and plants. The rare and endangered plants are important biodiversity elements. However, the lack of comprehensive and reliable information on the spatial distribution of these organisms has hampered holistic and efficient conservation management measures. We explored the consequences of climate change on the geographical distribution of Firmiana kwangsiensis (Malvaceae), an endangered species, to provide a reference for conservation, introduction, and cultivation of this species in new ecological zones. Modeling of the potential distribution of F. kwangsiensis under the current and two future climate scenarios in maximum entropy was performed based on 30 occurrence records and 27 environmental variables of the plant. We found that precipitation‐associated and temperature‐associated variables limited the potentially suitable habitats for F. kwangsiensis. Our model predicted 259,504 km2 of F. kwangsiensis habitat based on 25 percentile thresholds. However, the high suitable habitat for F. kwangsiensis is only about 41,027 km2. F. kwangsiensis is most distributed in Guangxi''s protected areas. However, the existing reserves are only 2.7% of the total suitable habitat and 4.2% of the high suitable habitat for the plant, lower than the average protection area in Guangxi (7.2%). This means the current protected areas network is insufficient, underlining the need for alternative conservation mechanisms to protect the plant habitat. Our findings will help identify additional F. kwangsiensis localities and potential habitats and inform the development and implementation of conservation, management, and cultivation practices of such rare tree species.  相似文献   

5.
Future changes in climate are imminent and they threat endangered and rare species due to habitat destruction. The Asiatic black bear (Ursus thibetanus gedrosianus) is a rare and vulnerable species whose habitat fragmentation and habitat loss decreased the size of its population significantly. Climate change is another threat to this species that is investigated in this research work. Aiming at this goal, ten species distribution models (SDMs) were applied as helpful tools for evaluating the potential effectiveness of climate change in habitat suitability of Asiatic black bear in Iran. Potential dispersal of Asiatic black bear was modeled as a function of 32 environmental variables for the current time and 2070 for 44 climate change scenarios (CC scenario) of future climate. Our results showed that modeling result depended on type of model. Our results confirmed that one of the greatest threats in the near future for Asiatic black bear was the change of suitable habitat due to climate change. All the CC scenarios showed that migration of this species would be to the north and west areas with higher elevation and that an increase in area would be more than a decrease in area in all scenarios. Recognizing and protecting potential future habitats are of the important activities to conserve this species and identify areas with conservation priority.  相似文献   

6.
Roe deer is a protected species in Iran as its population and distribution in the country have considerably declined. Roe deer are threatened by several factors such as habitat fragmentation and road mortality, so studying their distribution and movement through the increasing habitat destruction and fragmentation is necessary. This will become increasingly important because climate change will transform the species’ future habitat and connectivity patterns. We evaluated the roe deer’s potential distribution range in northern Iran and, for the first time, developed connectivity models and designed corridors for the present and future to make better conservation plans. We collected 91 points indicating the presence of roe deer in the study region. After developing ensemble models using six species distribution algorithms, we defined high-ranked habitat cores using the concept of landscape suitability prioritization. From these, we designed connectivity and corridors in two time-frames with the help of least-cost paths and circuit theories to predict the potential movement throughout the study area. We estimated that the overall core habitats for roe deer in the present and future periods are, respectively, around 1200 km2 and 2600 km2, corresponding to 2 and 4 percent of the whole area. This suggests that the habitat core will expand in the future as a result of climate change. Similarly, the connectivity among the cores will strengthen. We also conclude that the temperature-driven and anthropogenic variables significantly affect the distribution of roe deer in northern Iran. It is necessary that conservationists and managers consider the designed corridors in the present study while planning conservation strategies.  相似文献   

7.
Pinus brutia var. pityusa (Steven) Silba (Calabrian pine) is considered a vulnerable species because of reductions in its population sizes linked to habitat decline in recent decades. Global warming alongside the collateral modification of precipitation regimes may markedly affect the distribution ranges of this species.In this dendroecological study, we identified the most influential climatic factors affecting the radial growth of P. brutia on the northern and eastern coasts of the Black Sea among the northern refugia of this species. Chronologies from five sites located on the Crimea Peninsula and the Caucasian coast and exposed to varying climatic conditions were used in this analysis. The study of environmental factors controlling the growth of P. brutia trees in the coastal populations of Crimea and the Caucasus revealed that within the longitudinal transect, which encompasses a specific range of climatic conditions, correlations between climate and the growth of P. brutia under analogous orographic conditions are similar.Aridisation of the dry Crimean climate in 1981–2012 led to an increase in the tree growth response. In the same period, populations of P. brutia trees growing in the subtropical climate of the Black Sea coast exhibited a weakened growth response to the point of disappearance. The northern populations of P. brutia, which are at the climatic limit of the species’ distribution, are exposed to a high risk of increasing climate aridisation. Our findings could provide useful information for further research on the effects of climate change on Black Sea coastal forest ecosystems.  相似文献   

8.
Understanding and predicting how species will respond to climate change is crucial for biodiversity conservation. Here, we assessed future climate change impacts on the distribution of a rare and endangered plant species, Davidia involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one‐third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high‐latitude regions. Similarly, at least one‐fifth of the overlap area of the current nature reserve networks and projected suitable habitat is also expected to be lost. These findings suggest that it is of great importance to ensure that adaptive conservation management strategies are in place to mitigate the impacts of climate change on D. involucrate.  相似文献   

9.
Threatened and endangered species are more vulnerable to climate change due to small population and specific geographical distribution. Therefore, identifying and incorporating the biological processes underlying a species’ adaptation to its environment are important for determining whether they can persist in situ. Correlative models are widely used to predict species’ distribution changes, but generally fail to capture the buffering capacity of organisms. Giant pandas (Ailuropoda melanoleuca) live in topographically complex mountains and are known to avoid heat stress. Although many studies have found that climate change will lead to severe habitat loss and threaten previous conservation efforts, the mechanisms underlying panda's responses to climate change have not been explored. Here, we present a case study in Daxiangling Mountains, one of the six Mountain Systems that giant panda distributes. We used a mechanistic model, Niche Mapper, to explore what are likely panda habitat response to climate change taking physiological, behavioral and ecological responses into account, through which we map panda's climatic suitable activity area (SAA) for the first time. We combined SAA with bamboo forest distribution to yield highly suitable habitat (HSH) and seasonal suitable habitat (SSH), and their temporal dynamics under climate change were predicted. In general, SAA in the hottest month (July) would reduce 11.7%–52.2% by 2070, which is more moderate than predicted bamboo habitat loss (45.6%–86.9%). Limited by the availability of bamboo and forest, panda's suitable habitat loss increases, and only 15.5%–68.8% of current HSH would remain in 2070. Our method of mechanistic modeling can help to distinguish whether habitat loss is caused by thermal environmental deterioration or food loss under climate change. Furthermore, mechanistic models can produce robust predictions by incorporating ecophysiological feedbacks and minimizing extrapolation into novel environments. We suggest that a mechanistic approach should be incorporated into distribution predictions and conservation planning.  相似文献   

10.
基于单类别支持向量机方法的物种分布模型, 利用政府间气候变化专门委员会(IPCC)气候情景模式和联合国粮食与农业组织(FAO)的全球土壤数据, 模拟1981-2099年我国毛竹(Phyllostachys edulis)的潜在空间分布及变化趋势, 比较考虑土壤因子前后模拟结果的差异, 旨在探究土壤因子对毛竹潜在空间分布模拟结果的影响。结果表明, 仅以气候因子为模拟变量和同时考虑气候与土壤因子为模拟变量的毛竹潜在空间分布模拟均具有较高精度, 毛竹潜在分布区表现为面积增加并向北扩张。模拟因子重要性分析表明表征温暖程度的气候因子在毛竹潜在分布模拟中起主导作用, 而表征土壤质地和酸碱性的土壤因子以限制性作用为主。同时考虑气候与土壤因子的模拟结果具有较高的模拟效率, 且在未来气候变化情景模式下毛竹潜在分布区面积增幅与向北迁移幅度均小于仅使用气候因子的模拟, 表明土壤要素对毛竹潜在分布具有明显的限制作用, 该结果对现在的毛竹潜在分布模拟研究具有重要的补充作用。  相似文献   

11.
Understanding the drivers of habitat distribution patterns and assessing habitat connectivity are crucial for conservation in the face of climate change. In this study, we examined a sparsely distributed tree species, Kalopanax septemlobus (Araliaceae), which has been heavily disturbed by human use in temperate forests of South Korea. We used maximum entropy distribution modeling (MaxEnt) to identify the climatic and topographic factors driving the distribution of the species. Then, we constructed habitat models under current and projected climate conditions for the year 2050 and evaluated changes in the extent and connectivity of the K. septemlobus habitat. Annual mean temperature and terrain slope were the two most important predictors of species distribution. Our models predicted the range shift of K. septemlobus toward higher elevations under medium-low and high emissions scenarios for 2050, with dramatic reductions in suitable habitat (51% and 85%, respectively). In addition, connectivity analysis indicated that climate change is expected to reduce future levels of habitat connectivity. Even under the Representative Construction Pathway (RCP) 4.5 medium-low warming scenario, the projected climate conditions will decrease habitat connectivity by 78%. Overall, suitable habitats for K. septemlobus populations will likely become more isolated depending on the severity of global warming. The approach presented here can be used to efficiently assess species and habitat vulnerability to climate change.  相似文献   

12.
Predicting potential habitats of endemic species is a suitable method for biodiversity conservation and rehabilitation of rangeland ecosystems. The present study was conducted to estimate the geographic distribution of Artemisia sieberi (A. sieberi) and Artemisia aucheri (A. aucheri), find the most important environmental predictor variables and seek for similarities and differences in habitat preferences between the two species for Poshtkouh rangelands in Central Iran. Maps of environmental variables were created by means of geographic information system (GIS) and geostatistics. Then predictive distribution maps of both species were produced using the maximum entropy modeling technique (Maxent) and presence-only data. Model accuracy is evaluated by using the area under the curve (AUC). Lime1, gravel1, lime 2 and elevation most significantly affect habitat distribution of A. aucheri, while habitat distribution of A. sieberi is affected by elevation, lime1, am1, lime2, and om2. For both species, elevation has an influence on their potential distributions. However, A. aucheri depends more on elevation, and consequently climate in comparison to A. sieberi. Finally, it is revealed that the potential distribution of A. aucheri is limited mostly to mountainous landscapes while A. sieberi is present in wide ranges of environmental conditions.  相似文献   

13.
Seedborne systemic endophytic fungi of grasses are thought to be plant mutualists, because they have been shown to improve their host’s resistance against biotic and abiotic stresses. The interactions in plant–endophyte associations vary from mutualistic to parasitic with environmental conditions and the genotypes of interacting species. The possible pros and cons of endophytic fungi are expected to be most evident during the seedling establishment, where host fitness is most directly affected. If this holds true, endophytes may play a focal role in local adaptation of hosts to different environments. We examined if endophyte-infected and uninfected seeds and seedlings of two native grass species, Festuca rubra and F. ovina, differ in seed germination and seedling growth rates under greenhouse conditions. The germination of F. rubra seeds was also studied in the field. This is the first time that the effects of Epichloë endophyte on seedling establishment of fine fescues from natural populations have been experimentally evaluated. Mother plant (seed family) had a marked effect on many response variables in both grass species. Length and mean biomass of tillers of endophyte-infected (E+) F. ovina seedlings were lower, but root:shoot ratios were higher than in endophyte-free (E?) seedlings. In F. rubra, the effects of the endophyte were dependent on the habitat where the seeds were collected. The E+ seeds from river banks germinated faster than E+ seeds from meadows, and E+ seedlings from the river banks produced fewer but taller and heavier tillers than the other seedlings. Our data suggest that the effects of the endophyte infection on the seedling stage of fine fescues are dependent the species of grass, host genetic background and mother plant habitat. The germination strategy and growth form of E+ red fescue seedlings from river banks may be beneficial to surviving in the harsh conditions of that habitat.  相似文献   

14.
Chromosome numbers for 98 plants ofF. pallens, 19 ofF. psammophila, F. belensis andF. vaginata, and 44 ofF. ovina (originating from Austria, the Czech Republic, Germany, Slovakia and Latvia) are given. In addition to theF. ovina andF. pallens groups, chromosome counts for the following taxa are also reported:F. alpestris (2n=14) reported for the first time in this work,F. amethystina subsp.amethystina (2n=28),F. brevipila (2n=42),F. cinerea (2n=28),F. rupicola subsp.rupicola (2n=42) andF. versicolor subsp.versicolor (2n=14).InF. pallens, two ploidy levels (2n=2x=14+0-1B, 2n=4x=28+0-1B) as well as two natural triploid plants (2n=21+0-1B), were found. In addition to the fourF. pallens types that have been distinguished in Austria, one new tetraploid type (F. pallens “scabrifolia”) from the Czech Republic and Germany is reported and its taxonomy is discussed. The distributions of the Oberösterreich-Niederösterreich and Pannonisches-HügellandF. pallens types outside of Austria are documented.Only the diploid chromosome number (2n=14) was found inF. psammophila andF. vaginata. Chromosome numbers forF. psammophila subsp.muellerstollii andF. belensis (both 2n=14) were determined here for the first time. Two ploidy levels, 2n=14+0-5B corresponding toF. ovina subsp.ovina and 2n=28 corresponding toF. ovina subsp.guestphalica andF. cf.duernsteinensis were confirmed inF. ovina. Differences in chromosome structure (simple and multiple secondary constrictions) betweenF. pallens as opposed toF. psammophila andF. vaginata are discussed. A complete survey of published chromosome counts for Central European species from theF. ovina andF. pallens groups is included.  相似文献   

15.
Five main drivers of population declines have been identified: climate change, habitat degradation, invasive alien species (IAS), overexploitation and pollution. Each of these drivers interacts with the others, and also with the intrinsic traits of individual species, to determine species’ distribution and range dynamics. We explored the relative importance of life-history and resource-use traits, climate, habitat, and the IAS Harmonia axyridis in driving local extinction and colonisation dynamics across 25 ladybird species (Coleoptera: Coccinellidae).Species were classified as continually present, continually absent, extinct, or colonising in each of 4,642 1-km2 grid squares. The spatial distribution of local extinction and colonisation events (in the grid squares) across all species’ ranges were related to ecological traits, overlap with H. axyridis, climate, and habitat factors within generalised linear models (GLMs). GLMs were also used to relate species’ traits, range characteristics, and niche overlap with H. axyridis to extinction and colonisation rates summarised at the species level. Bayesian model averaging was used to account for model uncertainty, and produce reduced sets of models which were well-supported by data. Species with a high degree of niche overlap with H. axyridis suffered higher extinction rates in both analyses, while at the spatial scale extinctions were more likely and colonisations less likely in areas with a high proportion of urban land cover. In the spatial analysis, polymorphic species with large range sizes were more likely to colonise and less likely to go extinct, and sunny grid squares were more likely to be colonised. Large, multivoltine species and rainy grid squares were less likely to colonise or be colonised. In conclusion for ladybirds, extinction and colonisation dynamics are influenced by several factors. The only factor that both increased the local extinction likelihood and reduced colonisation likelihood was urban land cover, while ecological overlap with H. axyridis greatly increased extinction rates. Continued spread of H. axyridis is likely to adversely affect native species and urban areas may be particularly vulnerable.  相似文献   

16.

Background

A horizontal gene transfer has brought an active nuclear gene, PgiC2, from a polyploid Poa species (P. palustris or a close relative) into the common grass sheep''s fescue (Festuca ovina). The donor and the receptor species are strictly reproductively separated, and PgiC2 occurs in a polymorphic state within F. ovina. The active gene copy is normally closely linked to a very similar pseudogene.

Methodology/Principal Findings

By genome walking we have obtained the up- and downstream sequences of PgiC2 and of corresponding genes in the donor and recipient species. Comparisons of these sequences show that the complete upstream region necessary for the gene''s expression is included in the transferred segment. About 1 kb upstream of PgiC2 a fragment with transposition associated properties has been found (TAF). It is present in P. palustris and its polyploid relatives, though not at the homologous position, and is absent from many other grasses, including non-transgenic F. ovina plants. It is possible that it is a part of a transposing element involved in getting the gene into a transferring agent and/or into the recipient chromosome.

Conclusions/Significance

The close similarity of the up- and downstream regions with the corresponding regions in P. palustris excludes all suggestions that PgiC2 is not a HGT but the result of a duplication within the F. ovina lineage. The small size of the genetic material transferred, the complex nature of the PgiC2 locus, and the associated fragment with transposition associated properties suggest that the horizontal transfer occurred via a vector and not via illegitimate pollination.  相似文献   

17.
为了解贵州省青冈林在全球气候变化下的潜在分布特征,基于现状分布数据,结合当前气候数据和未来气候变化情景(RCP8.5情景,2070-2099年)构建Maxent潜在分布模型,预测贵州省青冈林的潜在分布变化。结果表明,最冷季均温(bio11)、最冷月最低温度(bio6)和年均降水量(bio12)为控制贵州省青冈林潜在生境的主导气候因子;RCP8.5情景下贵州省青冈林的潜在分布面积相较当前气候条件增加,中度适宜生境增加19 419 km2,高度适宜生境增加9 944 km2;中度适宜生境平均海拔较当前气候条件上升126 m,高度适宜生境平均上升85 m。总的来说,贵州省青冈林对全球气候变化的响应不十分敏感。  相似文献   

18.
《Journal of Asia》2022,25(3):101956
The beet armyworm, Spodoptera exigua (Hübner, 1808) and the Egyptian cotton leafworm, S. littoralis (Boisduval, 1833), are amongst the most notorious agricultural pest species in Iran. Spodoptera exigua is considered a serious pest of different crops, whereas S. littoralis is known as an important pest of cotton.In this paper, the potential distribution areas of these species in Iran and the important climatic factors affecting their distribution were predicted using the MaxEnt model and the ArcGIS. The results indicate that the main environmental variables contributing to S. exigua’s distribution were precipitation of the coldest quarter (bio19), average wind speed in April (wind4), and annual precipitation (bio12). Also, minimum temperature of the coldest month (bio6), mean temperature of coldest quarter (bio11), altitude and average wind speed in May (wind5) were dominant climatic factors that affected the potential distribution of S. littoralis. These species overlapped in most parts of coastal areas in the southern and northern parts of Iran, with an average overlapping range of 33.2%. Considering their preferred host plants in Iran, it is necessary to strengthen biosurveillance programes and management of these two species in their suitable areas to prevent further invasion, which endangers agricultural security.  相似文献   

19.
Liu X  Guo Z  Ke Z  Wang S  Li Y 《PloS one》2011,6(3):e18429

Background

Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders.

Methodology/Principal Findings

We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others.

Conclusions/Significance

Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes.  相似文献   

20.
Goitered gazelles, Gazella subgutturosa, exist in arid and semiarid regions of Asia from the Middle to the Far East. Although large populations were present over a vast area until recently, a decline of the population as a result of hunting, poaching, and habitat loss led to the IUCN classification of G. subgutturosa as “vulnerable." We examined genetic diversity, structure, and phylogeny of G. subgutturosa using mitochondrial cytochrome b sequences from 18 geographically distant populations in Iran. The median‐joining network of cyt b haplotypes indicated that three clades of goitered gazelles can be distinguished: a Middle Eastern clade west of the Zagros Mountains (and connected to populations in Turkey and Iraq), a Central Iranian clade (with connection to Azerbaijan), and an Asiatic clade in northeastern Iran (with connection to Turkmenistan, Uzbekistan, and other Asian countries as far as northeastern China and Mongolia). Based on our results, we argue that Iran is the center of diversification of goitered gazelles, due to the presence of large mountain ranges and deserts that lead to the separation of populations. In accordance with previous morphological studies, we identified the Asiatic clade as the subspecies G. s. yarkandensis, and the other two clades as the nominate form G. s. subgutturosa. The new genetic information for goitered gazelles in Iran provides the basis for future national conservation programs of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号