首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anamnestic data in respect to measles failed to correspond to the results of serological examination of contacts at the foci of the given infection. The collective immunity level in children's institutions is inadequate for the prevention of measles outbreaks. The incidence of the disease depended both on the level of immunity among the children and on the duration of presence of the source of infection in the focus. Live measles vaccine protected 90 percent of the vaccinated children from contracting the disease in the foci. At the very beginning of the postvaccinal period immunization defects were revealed in 26.5 percent of the vaccinated children who fell ill with measles. Morbidity index among the vaccinated individuals constituted 3.8 percent. One of the causes of measles contraction by the vaccinated individuals was the loss of postvaccinal immunity. Systematic control over the antimeasles immunity level with the aid of serological investigations is necessary for the purpose of detection of persons sensitive to measles in children's collective bodies.  相似文献   

2.
Imitation dynamics predict vaccinating behaviour   总被引:5,自引:0,他引:5  
There exists an interplay between vaccine coverage, disease prevalence and the vaccinating behaviour of individuals. Moreover, because of herd immunity, there is also a strategic interaction between individuals when they are deciding whether or not to vaccinate, because the probability that an individual becomes infected depends upon how many other individuals are vaccinated. To understand this potentially complex interplay, a game dynamic model is developed in which individuals adopt strategies according to an imitation dynamic (a learning process), and base vaccination decisions on disease prevalence and perceived risks of vaccines and disease. The model predicts that oscillations in vaccine uptake are more likely in populations where individuals imitate others more readily or where vaccinating behaviour is more sensitive to changes in disease prevalence. Oscillations are also more likely when the perceived risk of vaccines is high. The model reproduces salient features of the time evolution of vaccine uptake and disease prevalence during the whole-cell pertussis vaccine scare in England and Wales during the 1970s. This suggests that using game theoretical models to predict, and even manage, the population dynamics of vaccinating behaviour may be feasible.  相似文献   

3.
The Mallard (Anas platyrhynchos) is an important reservoir species for influenza A viruses (IAV), and in this host, prevalence and virus diversity are high. Studies have demonstrated the presence of homosubtypic immunity, where individuals are unlikely to be reinfected with the same subtype within an autumn season. Further, evidence for heterosubtypic immunity exists, whereby immune responses specific for one subtype offer partial or complete protection against related HA subtypes. We utilized a natural experimental system to determine whether homo‐ or heterospecific immunity could be induced following experimental vaccination. Thirty Mallards were vaccinated with an inactivated H3, H6 or a sham vaccine and after seroconversion were exposed to naturally infected wild conspecifics. All ducks were infected within 2 days and had both primary and secondary infections. Overall, there was no observable difference between groups; all individuals were infected with H3 and H10 IAV. At the cessation of the experiment, most individuals had anti‐NP antibodies and neutralizing antibodies against H10. Not all individuals had H3 neutralizing antibodies. The isolated H3 IAVs revealed genetic dissimilarity to the H3 vaccine strain, specifically substitutions in the vicinity of the receptor‐binding site. There was no evidence of vaccine‐induced homosubtypic immunity to H3, a likely result of both a poor H3 immune response in the ducks and H3 immune escape. Likewise, there was no observed heterosubtypic protection related to H6 vaccination. This study highlights the need for experimental approaches to assess how exposure to pathogens and resulting immune processes translates to individual and population disease dynamics.  相似文献   

4.
The COVID-19 pandemic demonstrated that the process of global vaccination against a novel virus can be a prolonged one. Social distancing measures, that are initially adopted to control the pandemic, are gradually relaxed as vaccination progresses and population immunity increases. The result is a prolonged period of high disease prevalence combined with a fitness advantage for vaccine-resistant variants, which together lead to a considerably increased probability for vaccine escape. A spatial vaccination strategy is proposed that has the potential to dramatically reduce this risk. Rather than dispersing the vaccination effort evenly throughout a country, distinct geographic regions of the country are sequentially vaccinated, quickly bringing each to effective herd immunity. Regions with high vaccination rates will then have low infection rates and vice versa. Since people primarily interact within their own region, spatial vaccination reduces the number of encounters between infected individuals (the source of mutations) and vaccinated individuals (who facilitate the spread of vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vaccine-resistant variants.  相似文献   

5.
Cholera, an enteric disease that can reach pandemic proportions, remains a world-wide problem that is positioned to increase in incidence as changes in global climate or armed conflict spawn the conditions that enhance transmission to humans and, thus, precipitate epidemic cholera. An effective subunit cholera vaccine that can provide protective immunity with one parenteral immunization would be a major advantage over the existing oral vaccines that can require two doses for optimal protection. The existing vaccines are clearly effective in some settings, but are less so in others, especially with respect to specific groups such as young (2-5 years) children. In our efforts to develop a cholera subunit vaccine, we focused on two Vibrio cholerae antigens, LPS (lipopolysaccharide) and TCP (toxin co-regulated pilus), that are known to induce protective antibodies in animal models and, in the case of anti-LPS antibodies, to be associated with clinical protection of V. cholerae exposed or vaccinated individuals. This review discusses the current cholera vaccines and compares the advantages of a cholera subunit vaccine to that of the whole cell vaccines. We discuss the possible subunit antigens and prospective targeted use of a subunit cholera vaccine.  相似文献   

6.
Ixodes scapularis ticks transmit the Lyme disease agent in the United States. Although strong antitick immunity mediates tick rejection by certain vertebrates, only a few Ags have been molecularly characterized. We show that guinea pig vaccination against a secreted tick salivary immunomodulator, sialostatin L2, can lead to decreased feeding ability of I. scapularis nymphs. Increased rejection rate, prolonged feeding time, and apparent signs of inflammation were observed for nymphs attached to vaccinated animals, indicating a protective host immune response. Interestingly, sialostatin L2 humoral recognition does not take place upon repeated tick exposure in control animals, but only in the vaccinated animals that neutralize sialostatin L2 action. Therefore, we demonstrate an essential sialostatin L2 role upon nymphal infestation that can be blocked by vertebrate immunity and propose the discovery of similarly "silent" Ags toward the development of a multicomponent vaccine that will protect against tick bites and the pathogens they transmit.  相似文献   

7.
BackgroundThe recommendations in several countries to stop using the ChAdOx1 vaccine has led to vaccine programs combining different Coronavirus Disease 2019 (COVID-19) vaccine types, which necessitates knowledge on vaccine effectiveness (VE) of heterologous vaccine schedules. The aim of this Danish nationwide population-based cohort study was therefore to estimate the VE against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and COVID-19–related hospitalization and death following the first dose of the ChAdOx1 vaccine and the combination of the ChAdOx1/mRNA vaccines.Methods and findingsAll individuals alive in or immigrating to Denmark from 9 February 2021 to 23 June 2021 were identified in the Danish Civil Registration System. Information on exposure, outcomes, and covariates was obtained from Danish national registries. Poisson and Cox regression models were used to calculate crude and adjusted VE, respectively, along with 95% confidence intervals (CIs) against SARS-CoV-2 infection and COVID-19–related hospitalization or death comparing vaccinated versus unvaccinated individuals. The VE estimates were adjusted for calendar time as underlying time and for sex, age, comorbidity, country of origin, and hospital admission. The analyses included 5,542,079 individuals (97.6% of the total Danish population). A total of 144,360 individuals were vaccinated with the ChAdOx1 vaccine as the first dose, and of these, 136,551 individuals received an mRNA vaccine as the second dose. A total of 1,691,464 person-years and 83,034 SARS-CoV-2 infections were included. The individuals vaccinated with the first dose of the ChAdOx1 vaccine dose had a median age of 45 years. The study population was characterized by an equal distribution of males and females; 6.7% and 9.2% originated from high-income and other countries, respectively. The VE against SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine was 88% (95% CI: 83; 92) 14 days after the second dose and onwards. There were no COVID-19–related hospitalizations or deaths among the individuals vaccinated with the combined vaccine schedule during the study period. Study limitations including unmeasured confounders such as risk behavior and increasing overall vaccine coverage in the general population creating herd immunity are important to take into consideration when interpreting the results.ConclusionsIn this study, we observed a large reduction in the risk of SARS-CoV-2 infection when combining the ChAdOx1 and an mRNA vaccine, compared with unvaccinated individuals.

Mie Agermose Gram and co-workers study the effectiveness of heterologous SARS-CoV-2 vaccine combinations in the Danish population.  相似文献   

8.
The results of 5-year observations on the duration of immunity to measles virus in persons vaccinated and revaccinated against measles, as well as in persons having had this infection, are presented. The intensity of immunity was determined in the same persons with the use of the passive hemagglutination test. The study revealed differences in the formation, intensity and duration of postvaccinal immunity. A significant decrease in the concentration of antibodies over the period of 5 years was established in 50.0-52.3% of vaccines. Revaccination with live measles vaccine is an effective measure for enhancing immunity to measles virus in persons with initial antibody titers less than 1:10-1:20, but revaccination made in a single injection is not sufficient for the stable maintenance of measles morbidity at the sporadic level. Postinfectious immunity is characterized by stability and has no tendency towards decrease. Persons having had measles have no need in additional measures irrespective of the time elapsed after the disease.  相似文献   

9.
Studies of human immunodeficiency virus (HIV) vaccines in animal models suggest that it is difficult to induce complete protection from infection (sterilizing immunity) but that it is possible to reduce the viral load and to slow or prevent disease progression following infection. We have developed an age-structured epidemiological model of the effects of a disease-modifying HIV vaccine that incorporates the intrahost dynamics of infection, a transmission rate and host mortality that depend on the viral load, the possible evolution and transmission of vaccine escape mutant viruses, a finite duration of vaccine protection, and possible changes in sexual behavior. Using this model, we investigated the long-term outcome of a disease-modifying vaccine and utilized uncertainty analysis to quantify the effects of our lack of precise knowledge of various parameters. Our results suggest that the extent of viral load reduction in vaccinated infected individuals (compared to unvaccinated individuals) is the key predictor of vaccine efficacy. Reductions in viral load of about 1 log(10) copies ml(-1) would be sufficient to significantly reduce HIV-associated mortality in the first 20 years after the introduction of vaccination. Changes in sexual risk behavior also had a strong impact on the epidemic outcome. The impact of vaccination is dependent on the population in which it is used, with disease-modifying vaccines predicted to have the most impact in areas of low prevalence and rapid epidemic growth. Surprisingly, the extent to which vaccination alters disease progression, the rate of generation of escape mutants, and the transmission of escape mutants are predicted to have only a weak impact on the epidemic outcome over the first 25 years after the introduction of a vaccine.  相似文献   

10.
Wu B  Fu F  Wang L 《PloS one》2011,6(6):e20577
Achieving widespread population immunity by voluntary vaccination poses a major challenge for public health administration and practice. The situation is complicated even more by imperfect vaccines. How the vaccine efficacy affects individuals' vaccination behavior has yet to be fully answered. To address this issue, we combine a simple yet effective game theoretic model of vaccination behavior with an epidemiological process. Our analysis shows that, in a population of self-interested individuals, there exists an overshooting of vaccine uptake levels as the effectiveness of vaccination increases. Moreover, when the basic reproductive number, R0, exceeds a certain threshold, all individuals opt for vaccination for an intermediate region of vaccine efficacy. We further show that increasing effectiveness of vaccination always increases the number of effectively vaccinated individuals and therefore attenuates the epidemic strain. The results suggest that 'number is traded for efficiency': although increases in vaccination effectiveness lead to uptake drops due to free-riding effects, the impact of the epidemic can be better mitigated.  相似文献   

11.

Background

Coccidiosis is a major global veterinary health problem in intensively reared chickens. It is caused by apicomplexan parasites of the genus Eimeria.

Principal Findings

A subunit vaccine composed of purified antigens from the gametocytes of Eimeria maxima was used to stimulate the production and transfer of maternal antibodies between breeding hens and their hatchlings. The vaccine was injected into hens twice before they began laying eggs. Immunization had no adverse affects on egg laying or health of the hens and resulted in high antibody levels throughout the life of the hens. Progeny of immunized hens excreted significantly less oocysts of various species of Eimeria in their faeces than chicks from unvaccinated hens. Furthermore, the offspring of vaccinated hens developed stronger natural immunity to Eimeria, so that they were resistant to challenge infection even at 8 weeks of age, well after all maternal antibodies had left their circulation. Field trials were conducted in South Africa, Brazil and Thailand, involving at least 1 million progeny of vaccinated hens and at least 1 million positive control birds (raised on feed containing anticoccidial drugs or immunized with a live vaccine) in each country. Additionally, trials were carried out in Israel involving 60 million progeny of vaccinated hens and 112 million positive control birds. There were no significant differences in growth rate, feed conversion ratios or mortality in the offspring of vaccinated hens compared with the positive control chickens in any of these countries regardless of different management practices, different breeds of chickens or climate.

Conclusions

These results demonstrate that a vaccine composed of antigens purified from the gametocytes of Eimeria can be used safely and effectively to prevent the deleterious effects of coccidiosis. It is the first subunit vaccine against any protozoan parasite to be successfully applied on a commercial scale.  相似文献   

12.
There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease, as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have engineered an influenza virus-like particle (VLP) as a new generation vaccine candidate purified from the supernatants of Sf9 insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA), neuraminidase (NA), and matrix 1 (M1). In this study, a seasonal trivalent VLP vaccine (TVV) formulation, composed of influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI) antibody titers against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses than a commercial trivalent inactivated vaccine (TIV). Ferrets vaccinated with the highest dose of the VLP vaccine and then challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.  相似文献   

13.
地衣芽孢杆菌对家兔体液免疫功能的影响研究   总被引:21,自引:2,他引:21  
本研究采用地衣芽孢杆菌制成微生态制剂,饲喂断奶后的家兔40天,再用兔病毒性出血病(RHD)组织灭活疫苗免疫,检测家兔产生的血清抗体对RHD病毒的特异性血凝抑制价和血清免疫球蛋白的含量。结果,试验组家兔的血清抗体对RHD病毒的特异性血凝抗体和血清免疫球蛋白含量均明显高于对照组。表明,地衣芽孢杆菌对家兔的体液免疫功能有促进作用,RHD组织灭活疫苗与地衣芽孢杆菌制剂相结合较单独使用疫苗的效果更佳  相似文献   

14.
15.
Several vaccines are now routinely used since fifty years in different developed countries. Their principal impact has been to decrease morbidity and mortality of the infectious diseases they are targeting. One disease, smallpox, is eradicated, poliomyelitis will be soon, diphteria is controlled in several countries but pertussis is still endemic although an efficacious vaccine was used. Why? Pertussis is an example of an infection for which the immunity of the population has changed after the introduction of generalized vaccination with killed whole cell pertussis vaccines, from a natural immunity due to infection to different types of vaccine-induced immunity. These different types of immunity have changed the protection against infection, disease and transmission. The impact of the generalized vaccination in a human population has been an important change in the epidemiology of the disease. In fact, a child-to-child transmission observed before the introduction of vaccination is now replaced by an adolescent-adult to infant transmission. The major consequence is an increase in the mortality and morbidity in non vaccinated infants mostly contaminated by their parents. Researches undertaken on the agent of the disease, the bacterium, Bordetella pertussis, conducted to the development of subunits vaccines, efficacious and better tolerated by infants than whole-cell vaccines. Many developed countries decided to change vaccines but also to add vaccine boosters for adolescents and adults in order to stop the transmission of the disease to infants. However, even after 15 years of studies in many countries, pertussis is still underestimated in adults and generalized adult vaccination remains difficult. The new goal now is to give information to medical students and health care workers in general in order to increase adolescent and adult's vaccination coverage.  相似文献   

16.

Background

Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960''s led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations.

Principal Findings

In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines.

Conclusions

These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology.  相似文献   

17.
Vaccination, as an approach to prostate cancer, has largely focused on immunotherapy utilizing specific molecules or allogeneic cells. Such methods are limited by the focused antigenic menu presented to the immune system and by immunotolerance to antigens recognized as “self”. To examine if a xenogeneic tissue vaccine could stimulate protective immunity in a human prostate cancer cell line, a vaccine was produced by glutaraldehyde fixation of harvested PAIII prostate cancer cells tumors (GFT cell vaccine) from Lobund-Wistar rats. Immunocompetent Ncr-Foxn1<nu> mice were vaccinated with the GFT cell vaccine four times, 7 days apart. The control animals were either not vaccinated or vaccinated with media or glutaraldehyde-fixed PC346C human prostate cancer cells and adjuvant. About 8 days after the final boost, serum and spleens were harvested. The splenocytes were co-incubated with PC346C cells and then transplanted orthotopically into sygneneic immunodeficient nude mice. About 10 weeks later, the prostates were weighed and sampled for histolologic examination. The spleens were harvested from additional mice, and the splenocytes were cultured, either with or without pulsing by GFT cells, and the supernatants harvested 72 h later for cytokine analysis. Results showed that vaccination with GFT cells resulted in increased serum antibody to a PAIII cell lysate; reduced weight of the prostate/seminal vesicle complex and reduced incidence of prostate cancer in nude mice; increased splenocyte supernatant levels of TNF-α, IL-2, IFN-γ and IL-12, cytokines associated with Th1 immunity; and increased splenocyte supernatant levels of IL-4 and IL-10, cytokines associated with Th2 immunity. In summary, the results suggest that use of a xenogeneic tissue vaccine can stimulate protective immunity against human prostate cancer cells.  相似文献   

18.

Background

Our study analyses the main determinants of refusal or acceptance of the 2009 A/H1N1 vaccine in patients with cystic fibrosis, a high-risk population for severe flu infection, usually very compliant for seasonal flu vaccine.

Methodology/Principal Findings

We conducted a qualitative study based on semi-structured interviews in 3 cystic fibrosis referral centres in Paris, France. The study included 42 patients with cystic fibrosis: 24 who refused the vaccine and 18 who were vaccinated. The two groups differed quite substantially in their perceptions of vaccine- and disease-related risks. Those who refused the vaccine were motivated mainly by the fears it aroused and did not explicitly consider the 2009 A/H1N1 flu a potentially severe disease. People who were vaccinated explained their choice, first and foremost, as intended to prevent the flu''s potential consequences on respiratory cystic fibrosis disease. Moreover, they considered vaccination to be an indirect collective prevention tool. Patients who refused the vaccine mentioned multiple, contradictory information sources and did not appear to consider the recommendation of their local health care provider as predominant. On the contrary, those who were vaccinated stated that they had based their decision solely on the clear and unequivocal advice of their health care provider.

Conclusions/Significance

These results of our survey led us to formulate three main recommendations for improving adhesion to new pandemic vaccines. (1) it appears necessary to reinforce patient education about the disease and its specific risks, but also general population information about community immunity. (2) it is essential to disseminate a clear and effective message about the safety of novel vaccines. (3) this message should be conveyed by local health care providers, who should be involved in implementing immunization.  相似文献   

19.
The emergence and spread of mutant pathogens that evade the effects of prophylactic interventions, including vaccines, threatens our ability to control infectious diseases globally. Imperfect vaccines (e.g. those used against influenza), while not providing life-long immunity, confer protection by reducing a range of pathogen life-history characteristics; conversely, mutant pathogens can gain an advantage by restoring the same range of traits in vaccinated hosts. Using an SEIR model motivated by equine influenza, we investigate the evolutionary consequences of alternative types of imperfect vaccination, by comparing the spread rate of three types of mutant pathogens, in response to three types of vaccines. All mutant types spread faster in response to a transmission-blocking vaccine, relative to vaccines that reduce the proportion of exposed vaccinated individuals becoming infectious, and to vaccines that reduce the length of the infectious period; this difference increases with increasing vaccine efficacy. We interpret our results using the first published Price equation formulation for an SEIR model, and find that our main result is explained by the effects of vaccines on the equilibrium host distribution across epidemiological classes. In particular, the proportion of vaccinated infectious individuals among all exposed and infectious hosts, which is relatively higher in the transmission-blocking vaccine scenario, is important in explaining the faster spread of mutant strains in response to that vaccine. Our work illustrates the connection between epidemiological and evolutionary dynamics, and the need to incorporate both in order to explain and interpret findings of complicated infectious disease dynamics.  相似文献   

20.
Massive measles immunization in Riga led to a marked reduction of measles incidence and to a change of the principal regularities of the epidemic process in this infection. Among those who contracted the disease there was an increase in the percentage of schoolchildren; affection with measles of children attending creches and kindergartens and the intensity of the spread of the infection in them diminished. Selective examination of the immunological efficacy of the living measles vaccine prepared of the (see article) and applied in 1967--1972 demonstrated the presence of specific stimulation of the antibody formation in about 90% of the persons vaccinated. The intensity of humoral immunity in the persons vaccinated did not diminish with the advance of time after the vaccination, and 6--7 years after the vaccination over 90% of the vaccinated individuals were reliably protected from measles. The presence of numerous negative results in carrying out the vaccinations in individual institutions is apparently attributed chiefly to disturbances of the storage regimen of transportation and of the use of the vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号