首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We performed a numerical taxonomy analysis of 38 Mycobacterium paratuberculosis and related mycobacterial strains, including wood pigeon mycobacteria; this analysis was based on 22 tests, which were selected for their potential discriminative value from a total of 51 tests studied and produced four well-defined clusters. Cluster 1 contained the M. paratuberculosis strains, including two strains isolated from Crohn's disease patients; cluster 2 contained Mycobacterium avium and Mycobacterium intracellulare reference strains; cluster 3 consisted of the wood pigeon mycobacteria; and the only strain in cluster 4 was M. paratuberculosis 316F, which is used for antigen and vaccine production. Strains in cluster 1 were mycobactin dependent even when they were subcultured, whereas strains in cluster 3 were unable to grow on egg medium and their growth was stimulated by pH 5.5. Growth stimulation by pyruvate, resistance to D-cycloserine (50 micrograms/ml), and alkaline phosphatase activity also were characteristics that were useful for discriminating between clusters 1 and 3. The results of previous DNA-DNA hybridization studies have demonstrated that M. avium Chester 1901, M. paratuberculosis Bergey et al. 1923, and the wood pigeon mycobacteria belong to a single genomic species, and we propose that the name of this species should be M. avium. On the basis of the results of previous genomic analyses based on restriction fragment length, the results of polymorphism studies, and DNA patterns determined by field inversion gel electrophoresis as well as the results of our phenotypic study, we propose that the species should be divided into subspecies which correspond to pathogenicity and host range characteristics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The presence of Mycobacterium avium subsp. paratuberculosis (MAP) in non-ruminant wildlife has raised questions regarding the role of these species in Johne's disease transmission. In this study we tested 472 tissues from 212 animals of six different species of scavenging mammals. All animals were taken from within a 210-square-mile area in Dane and Iowa counties of south central Wisconsin from September to May in 2003-04 and tested for the presence of MAP. We detected MAP-specific DNA in 81 of 212 (38%) scavenging mammals, in 98 of the 472 (21%) tissues; viable MAP was cultured from one coyote's ileum and lymph node tissue. Despite the low numbers of viable MAP isolated in this study, our data adds to the increasing evidence demonstrating the potential for transmission and infection of MAP in nonruminant species and provides possible evidence of interspecies transmission. The apparently high exposure of nonruminant wildlife provides potential evidence of a spill-over of MAP to wildlife species and raises the question of spillback to domestic and wild ruminants. These results demonstrate the importance of understanding the role of wildlife species in developing management strategies for Johne's disease in domestic livestock.  相似文献   

5.
The effectiveness of pasteurization and the concentration of Mycobacterium avium subsp. paratuberculosis in raw milk have been identified in quantitative risk analysis as the most critical factors influencing the potential presence of viable Mycobacterium paratuberculosis in dairy products. A quantitative assessment of the lethality of pasteurization was undertaken using an industrial pasteurizer designed for research purposes with a validated Reynolds number of 62,112 and flow rates of 3,000 liters/h. M. paratuberculosis was artificially added to raw whole milk, which was then homogenized, pasteurized, and cultured, using a sensitive technique capable of detecting one organism per 10 ml of milk. Twenty batches of milk containing 103 to 104 organisms/ml were processed with combinations of three temperatures of 72, 75, and 78°C and three time intervals of 15, 20, and 25 s. Thirty 50-ml milk samples from each processed batch were cultured, and the logarithmic reduction in M. paratuberculosis organisms was determined. In 17 of the 20 runs, no viable M. paratuberculosis organisms were detected, which represented >6-log10 reductions during pasteurization. These experiments were conducted with very heavily artificially contaminated milk to facilitate the measurement of the logarithmic reduction. In three of the 20 runs of milk, pasteurized at 72°C for 15 s, 75°C for 25 s, and 78°C for 15 s, a few viable organisms (0.002 to 0.004 CFU/ml) were detected. Pasteurization at all temperatures and holding times was found to be very effective in killing M. paratuberculosis, resulting in a reduction of >6 log10 in 85% of runs and >4 log10 in 14% of runs.  相似文献   

6.
The effectiveness of pasteurization and the concentration of Mycobacterium avium subsp. paratuberculosis in raw milk have been identified in quantitative risk analysis as the most critical factors influencing the potential presence of viable Mycobacterium paratuberculosis in dairy products. A quantitative assessment of the lethality of pasteurization was undertaken using an industrial pasteurizer designed for research purposes with a validated Reynolds number of 62,112 and flow rates of 3,000 liters/h. M. paratuberculosis was artificially added to raw whole milk, which was then homogenized, pasteurized, and cultured, using a sensitive technique capable of detecting one organism per 10 ml of milk. Twenty batches of milk containing 10(3) to 10(4) organisms/ml were processed with combinations of three temperatures of 72, 75, and 78 degrees C and three time intervals of 15, 20, and 25 s. Thirty 50-ml milk samples from each processed batch were cultured, and the logarithmic reduction in M. paratuberculosis organisms was determined. In 17 of the 20 runs, no viable M. paratuberculosis organisms were detected, which represented > 6-log10 reductions during pasteurization. These experiments were conducted with very heavily artificially contaminated milk to facilitate the measurement of the logarithmic reduction. In three of the 20 runs of milk, pasteurized at 72 degrees C for 15 s, 75 degrees C for 25 s, and 78 degrees C for 15 s, a few viable organisms (0.002 to 0.004 CFU/ml) were detected. Pasteurization at all temperatures and holding times was found to be very effective in killing M. paratuberculosis, resulting in a reduction of > 6 log10 in 85% of runs and > 4 log10 in 14% of runs.  相似文献   

7.
Paratuberculosis, or Johne''s disease, is a chronic, granulomatous, gastrointestinal tract disease of cattle and other ruminants caused by the bacterium Mycobacterium avium, subspecies paratuberculosis (MAP). Control of Johne''s disease is based on programs of testing and culling animals positive for infection with MAP while concurrently modifying management to reduce the likelihood of infection. The current study is motivated by the hypothesis that genetic variation in host susceptibility to MAP infection can be dissected and quantifiable associations with genetic markers identified. For this purpose, a case-control, genome-wide association study was conducted using US Holstein cattle phenotyped for MAP infection using a serum ELISA and/or fecal culture test. Cases included cows positive for either serum ELISA, fecal culture or both. Controls consisted of animals negative for the serum ELISA test or both serum ELISA and fecal culture when both were available. Controls were matched by herd and proximal birth date with cases. A total of 856 cows (451 cases and 405 controls) were used in initial discovery analyses, and an additional 263 cows (159 cases and 104 controls) from the same herds were used as a validation data set. Data were analyzed in a single marker analysis controlling for relatedness of individuals (GRAMMAR-GC) and also in a Bayesian analysis in which multiple marker effects were estimated simultaneously (GenSel). For the latter, effects of non-overlapping 1 Mb marker windows across the genome were estimated. Results from the two discovery analyses were generally concordant; however, discovery results were generally not well supported in analysis of the validation data set. A combined analysis of discovery and validation data sets provided strongest support for SNPs and 1 Mb windows on chromosomes 1, 2, 6, 7, 17 and 29.  相似文献   

8.
Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne''s disease in cattle, was identified in settled-dust samples of Dutch commercial dairy farms, both in the dairy barn and in the young stock housing. Bioaerosols may play a role in within-farm M. avium subsp. paratuberculosis transmission.Paratuberculosis is an infectious enteric disease caused by Mycobacterium avium subsp. paratuberculosis leading to economic losses in dairy cattle globally (2, 10). The main transmission route is the fecal/oral route from infectious adult cattle to susceptible calves (12).Preventive calf management was a key point in model studies (7), but 20-year implementation did not lead to farm-level eradication, suggesting uncontrolled routes of transmission (1, 7).Environmental samples were used to classify commercial dairy herds (3, 9, 11), based on long-term survival of M. avium subsp. paratuberculosis in the environment (16). Recently, bioaerosols containing viable M. avium subsp. paratuberculosis were identified in an experimental setting with 100% M. avium subsp. paratuberculosis prevalence (6) and may thus be a mode of transmission. Dust containing M. avium subsp. paratuberculosis might be ingested or inhaled by calves (4). Experimental M. avium subsp. paratuberculosis challenge studies in sheep successfully used inhalation (8). These transmission routes could hamper current control programs. Our objective was to study whether M. avium subsp. paratuberculosis could be detected in bioaerosols on commercial Dutch dairy farms.Dairy herds in three Dutch veterinary practices were sampled in 2009. All farms participated in a Dutch M. avium subsp. paratuberculosis monitoring program in 2008, either the Dutch Paratuberculosis Program (PPN; n = 2) or the Dutch Bulk Milk Quality Assurance Program (BMQAP; n = 22) (15). Both PPN herds were certified M. avium subsp. paratuberculosis-free. Herds corresponding to the BMQAP had at least one positive animal identified by enzyme-linked immunosorbent assay (ELISA) (Pourquier ELISA; Institut Pourquier, France). Farms were grouped into three M. avium subsp. paratuberculosis test prevalence levels (control, zero positive animals; group A, one positive animal; group B, two or more positive animals; Table Table11).

TABLE 1.

Overview of the results of the questionnaire about relevant M. avium subsp. paratuberculosis management practicesa
ParameterValue for groupb
Control (n = 2)A (n = 8)B (n = 14)
Mean herd size (SD)69 (15)67 (19)102 (26)
Median no. of ELISA-positive cows (maximum)0 (0)1 (1)3 (10)
No. of farms with:
    Cow brush in barn2513
    Cow barn cleaned in summer with high-pressure cleaner064
    Dry cows in young stock housing033
    Young stock housed separately178
    Young stock housing empty in summer000
    Young stock housing cleaned with high-pressure cleaner061
Open in a separate windowaResults of the questionnaire about relevant M. avium subsp. paratuberculosis management practices in 24 Dutch farms enrolled in this study with 0 (control), 1 (group A), or ≥2 (group B) ELISA-positive animals.bn, number of farms.Farms were visited twice during the housing period. Sampling locations were above the animal level inside the barn. At the first visit (sampling 1 [S1]), settled dust was collected with wipes and a short management questionnaire was taken. At the same time, five to seven electrostatic dust collectors (EDC; Zeeman, Alphen a/d Rhijn, Netherlands) were installed and collected after 4 weeks (sampling 2 [S2]) (6). Settled-dust samples were processed according to a previously described method (6). Results are presented as proportions of positive locations. McNemar''s χ2 test was performed to investigate whether S1 differed from S2.No M. avium subsp. paratuberculosis was detected by real-time PCR in any of the settled-dust samples at control farms (Fig. (Fig.1).1). M. avium subsp. paratuberculosis DNA was detected in dust samples at S1 and S2 in more than 50% of the group A and B farms, with seven farms consistently positive. M. avium subsp. paratuberculosis DNA was detected in the young stock area in 3/6 (S1) and 2/6 (S2) farms of group B with single-barn housing. M. avium subsp. paratuberculosis DNA was also detected in settled-dust samples from separate young stock housings in three farms, of which two cohoused dry cows.Open in a separate windowFIG. 1.Proportions of farms with M. avium subsp. paratuberculosis DNA detected in settled-dust samples collected at samplings 1 and 2. Black bar, control (n = 2); checked bar, group A (n = 8); white bar, group B (n = 14).At control farms, no viable M. avium subsp. paratuberculosis was detected in any of the collected dust samples (Fig. (Fig.2).2). Viable M. avium subsp. paratuberculosis was detected in 6 B farms at S1. At S2, viable bacteria were present in 3 A farms and in the majority of B farms (Table (Table2).2). On five farms in group B, viable M. avium subsp. paratuberculosis was detected at both samplings.Open in a separate windowFIG. 2.Proportions of farms with viable M. avium subsp. paratuberculosis detected in settled-dust samples collected at samplings 1 and 2. Black bar, control (n = 2); checked bar, group A (n = 8); white bar, group B (n = 14).

TABLE 2.

Detection of M. avium subsp. paratuberculosis DNA or viable M. avium subsp. paratuberculosis in 5 to 7 settled-dust samples collected at sampling 1 or 2
No. of positive dust samplesNo. of farms with:
M. avium subsp. paratuberculosis DNA
Viable M. avium subsp. paratuberculosis
Control (n = 2)
Group A (n = 8)
Group B (n = 14)
Control (n = 2)
Group A (n = 8)
Group B (n = 14)
S1S2S1S2S1S2S1S2S1S2S1S2
0224345228586
13446124
243112
31111112
412
Open in a separate windowViable M. avium subsp. paratuberculosis was detected in the young stock housing in 4 and 3 farms of group B with single-barn housing at S1 and S2, respectively. No viable M. avium subsp. paratuberculosis was detected in separate young stock housings.To our knowledge, this study is the first to confirm the presence of M. avium subsp. paratuberculosis DNA as well as viable M. avium subsp. paratuberculosis in settled-dust samples of commercial dairy farms. M. avium subsp. paratuberculosis dispersion by bioaerosols under experimental conditions was already described (6). These findings support the concept of dust-based environmental dispersion of M. avium subsp. paratuberculosis within farms.The relatively small number of farms and the convenience sampling are limitations of this study that could have introduced bias. However, this study is a proof of principle that viable M. avium subsp. paratuberculosis can be detected in settled-dust samples on farms with a low M. avium subsp. paratuberculosis prevalence. The environmental method also seems specific for M. avium subsp. paratuberculosis, since no M. avium subsp. paratuberculosis could be detected in any samples of known M. avium subsp. paratuberculosis-free herds.Paratuberculosis control measures aim to prevent fecal-oral contact between infectious shedding adults and susceptible calves as the main transmission route of M. avium subsp. paratuberculosis. Several studies showed that “calf hygiene improvement” decreased prevalence but did not eliminate the disease (1, 7, 14), suggesting the existence of other transmission routes. In utero transmission, transmission via milk, and calf-to-calf transmission have been described previously (1, 12, 13). Additionally, infection via ingestion and/or inhalation of bioaerosols may be possible (4, 8).Twenty-three of 24 herds were housed in free stalls with one tie-stall herd. Most farmers (n = 15) separated young stock from adult cattle as standard procedure. However, six of these farmers cohoused dry cows in the young stock housing occasionally, indicating the difficulties of consequently implementing management advice. Three farmers did not raise young stock on their farms. In almost all barns, cow brushes were present, as they were recommended to enhance cow well-being in group housings (5), but at the same time they contribute to aerosolization of dust. Animal movement on slatted floors also contributes to dust formation, especially during the winter housing period.Most farmers from group A farms, compared to only a few from group B farms, intended to clean their barns yearly, but only 50% met this aim. Young stock housings were never totally empty, but high-pressure cleaning was occasionally performed at 6/8 farms of group A and at 1 of group B. The numbers of farms in this study precluded statistical testing, but the difference in cleaning attitude seemed remarkable.Comparison of the two methods of dust collection showed no statistical difference. No M. avium subsp. paratuberculosis, neither DNA nor viable M. avium subsp. paratuberculosis, could be detected on known negative farms, whereas on farms of groups A and B, M. avium subsp. paratuberculosis DNA was present in comparable numbers of locations. Viable M. avium subsp. paratuberculosis was present only in group B farms at S1 and in both group A and B farms at S2. It seems that M. avium subsp. paratuberculosis can survive in dust for some time. Besides having a possible role in M. avium subsp. paratuberculosis transmission, dust might also be a useful predictor of M. avium subsp. paratuberculosis presence or M. avium subsp. paratuberculosis introduction on dairy farms, even on farms with low M. avium subsp. paratuberculosis prevalence.In conclusion, this study showed that dust on farms with a low M. avium subsp. paratuberculosis seroprevalence contained viable M. avium subsp. paratuberculosis, which indicated a role in M. avium subsp. paratuberculosis transmission. Further research is needed to study if and how infection with M. avium subsp. paratuberculosis-contaminated dust is possible. Additionally, dust sampling may be an alternative tool to monitor M. avium subsp. paratuberculosis status in control programs.  相似文献   

9.

Background  

Interactions between Mycobacterium avium subsp. paratuberculosis (Map) and free-living protozoa in water are likely to occur in nature. The potential impact of ingestion of Map by two naturally occurring Acanthamoeba spp. on this pathogen's survival and chlorine resistance was investigated.  相似文献   

10.
Attachment of Mycobacterium avium subsp. paratuberculosis to soil particles could increase their availability to farm animals, as well as influence the transportation of M. avium subsp. paratuberculosis to water sources. To investigate the possibility of such attachment, we passed a known quantity of M. avium subsp. paratuberculosis through chromatography columns packed with clay soil, sandy soil, pure silica, clay-silica mixture, or clay-silica complexes and measured the organisms recovered in the eluent using culture or quantitative PCR. Experiments were repeated using buffer at a range of pH levels with pure silica to investigate the effect of pH on M. avium subsp. paratuberculosis attachment. Linear mixed-model analyses were conducted to compare the proportional recovery of M. avium subsp. paratuberculosis in the eluent between different substrates and pH levels. Of the organisms added to the columns, 83 to 100% were estimated to be retained in the columns after adjustment for those retained in empty control columns. The proportions recovered were significantly different across different substrates, with the retention being significantly greater (P < 0.05) in pure substrates (silica and clay-silica complexes) than in soil substrates (clay soil and sandy soil). However, there were no significant differences in the retention of M. avium subsp. paratuberculosis between silica and clay-silica complexes or between clay soil and sandy soil. The proportion retained decreased with increasing pH in one of the experiments, indicating greater adsorption of M. avium subsp. paratuberculosis to soil particles at an acidic pH (P < 0.05). The results suggest that under experimental conditions M. avium subsp. paratuberculosis adsorbs to a range of soil particles, and this attachment is influenced by soil pH.Mycobacterium avium subsp. paratuberculosis is a pathogen of great significance for livestock since it causes a fatal and economically important disease called paratuberculosis or Johne''s disease (JD). The significance of M. avium subsp. paratuberculosis has further increased due to speculation over its role in the causation of Crohn''s disease in humans (10). Although reports trying to establish a causative association between M. avium subsp. paratuberculosis and Crohn''s disease are conflicting and inconclusive, they have aroused concerns among public health authorities (13); therefore, greater attention is now being paid to understand the natural ecology of M. avium subsp. paratuberculosis (32, 34). We investigated a largely unexplored aspect of the natural ecology of M. avium subsp. paratuberculosis: its attachment to soil particles, which could influence its availability to farm animals and humans (see below).Bacteria can become loosely associated with clay or soil particles through reversible adsorption mediated by electrostatic and van der Waals'' forces or by cell surface hydrophobicity (20). An irreversible firm attachment may later occur usually mediated by extracellular bridging polymers (8). The attachment of microbiota such as Escherichia coli, Arthrobacter spp., and poliovirus to soil or clay particles has been reported previously (2, 3, 11, 22, 26), but there is only indirect evidence of the association of mycobacteria with soil particles. A study reported the recovery of only 3.5% of nontuberculous mycobacteria inoculated into soil samples and attributed this to their adsorption to clay particles (5). Later, a similar phenomenon was inferred for M. avium subsp. paratuberculosis because 99% of these organisms in feces could not be detected upon culture of feces mixed with soil, suggesting the binding of M. avium subsp. paratuberculosis to soil particles (33). An association between M. avium subsp. paratuberculosis and clay particles was also suggested by an epidemiological study conducted to investigate the risk factors for ovine JD, indicating the possibility of bacterial attachment to clay particles (6).M. avium subsp. paratuberculosis is transmitted primarily by the feco-oral route. Infected animals shed huge numbers of M. avium subsp. paratuberculosis in their feces (29, 35), thus contaminating soil and the farm environment. The ability of M. avium subsp. paratuberculosis to survive for extended periods in an external environment, in spite of it being an obligate parasite (32, 34), facilitates the build-up of soil and pasture contamination levels over time. The attachment of M. avium subsp. paratuberculosis to soil particles could help retain the bacteria in the upper layers of the soil, thus further enhancing contamination levels. The contaminated farm environment thus becomes a potential source of infection for farm animals because grazing ruminants normally consume soil with pasture, and the amounts can be substantial, up to 300 or more grams per day for sheep (9, 21).In addition, runoff from contaminated farm soils can contaminate water bodies (23), which can be a potential health hazard for humans because the routine chlorine disinfection of water is not able to eliminate M. avium subsp. paratuberculosis completely (28). The transportation of bacteria from the farm environment to water sources is influenced by their attachment to soil or clay particles (11, 12). Generally, bacterial adsorption to soil particles decreases the rate of transportation through soil (3), but it also helps retain bacteria in the top surface layers of the soil, thus increasing the possibility of the contamination of runoff water (24). Note that soil particles can be dislodged and moved by wind, water, and mechanical factors.The aim of the present study was to verify whether M. avium subsp. paratuberculosis attaches to clay and other soil particles and whether this attachment is influenced by soil pH. The study findings improve our knowledge and understanding of the natural ecology of M. avium subsp. paratuberculosis.  相似文献   

11.
12.
In a previous longitudinal study, Mycobacterium avium subsp. paratuberculosis survived for 55 weeks in fecal material in the shade, but for much shorter periods in exposed locations. In this experiment, the survival of the organism was studied in 250 liters of dam water and sediment in large water troughs that were placed in either a semiexposed location or in a shaded location and compared to survival in fecal material and soil in the shaded location. Survival in water and/or sediment in the shade was for up to 48 weeks compared to 36 weeks in the semiexposed location. Survival in sediment was 12 to 26 weeks longer than survival in the water column. Survival in soil and fecal material in the terrestrial environment in the shaded location was only 12 weeks. Although disturbance to sediment could not be ruled out as a factor, there was evidence of dormancy in both the water column and the sediment, since the organism could not be recovered for several months before again becoming detectable. The results suggest that water may be a significant reservoir of M. avium subsp. paratuberculosis infection. Further research on the biology of the organism in aquatic environments is warranted. Animal health authorities will need to provide appropriate advice to farmers to minimize exposure of livestock to potentially infected water sources. Survival of the organism in water destined for human consumption will need to be addressed if the organism is found to be involved in the etiology of Crohn's disease.  相似文献   

13.
In a previous longitudinal study, Mycobacterium avium subsp. paratuberculosis survived for 55 weeks in fecal material in the shade, but for much shorter periods in exposed locations. In this experiment, the survival of the organism was studied in 250 liters of dam water and sediment in large water troughs that were placed in either a semiexposed location or in a shaded location and compared to survival in fecal material and soil in the shaded location. Survival in water and/or sediment in the shade was for up to 48 weeks compared to 36 weeks in the semiexposed location. Survival in sediment was 12 to 26 weeks longer than survival in the water column. Survival in soil and fecal material in the terrestrial environment in the shaded location was only 12 weeks. Although disturbance to sediment could not be ruled out as a factor, there was evidence of dormancy in both the water column and the sediment, since the organism could not be recovered for several months before again becoming detectable. The results suggest that water may be a significant reservoir of M. avium subsp. paratuberculosis infection. Further research on the biology of the organism in aquatic environments is warranted. Animal health authorities will need to provide appropriate advice to farmers to minimize exposure of livestock to potentially infected water sources. Survival of the organism in water destined for human consumption will need to be addressed if the organism is found to be involved in the etiology of Crohn's disease.  相似文献   

14.
15.
16.
The Norwegian surveillance and control programme for paratuberculosis revealed 8 seroreactors in a single dairy cattle herd that had no clinical signs of Mycobacterium avium subsp. paratuberculosis (M. a. paratuberculosis) infection. Paratuberculosis had been a clinical problem in goats several years previously in this herd. All 45 cattle were culled and a thorough investigation of the infection status was conducted by the use of interferon-γ (IFN-γ) immunoassay, measurement of antibodies, and pathological and bacteriological examination.  相似文献   

17.
We compared the kinetics of activation and antimicrobial activities of MAPK-p38 and MAPK-ERK in bovine monocytes infected with Mycobacterium avium subsp. paratuberculosis (MAP) and Mycobacterium avium subsp. avium (Maa). Monocytes were incubated with MAP or Maa organisms with or without a specific inhibitor of the MAPK-p38 pathway (SB203580), and MAPK phosphorylation and antimicrobial functions of monocytes were evaluated. At early time points MAPK-p38 phosphorylation was greater in MAP-infected bovine monocytes than in Maa-infected monocytes. At later time points MAPK-p38 phosphorylation by both organisms was similar. MAPKp38 phosphorylation in MAP-infected monocytes was similar to negative control cells, whereas in Maa-infected this activation remained greater than negative control cells. Increase phosphorylation MAPK-ERK was similar at all time points for both organisms. Bovine monocytes had minimal capacity to kill MAP organisms, to acidify MAP-containing phagosomes, or to form phagolysosome. Alternatively, bovine monocytes were able to kill Maa organisms. Addition of SB203580 to monocyte cultures increased phagosome acidification, phagolysosome formation, and killing of MAP and Maa organisms. Taken together these data indicate that early transient activation of MAPK-p38 in bovine mononuclear phagocytes by MAP organisms may be a key mechanism involved in the capacity of MAP to survive in bovine monocytes.  相似文献   

18.
Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.  相似文献   

19.
Between 2 August and 22 September 2000, 37 hunter-killed tule elk (Cervus elaphus nannodes) were evaluated at the Grizzly Island Wildlife Area, California, USA, for evidence of paratuberculosis. Elk were examined post-mortem, and tissue and fecal samples were submitted for radiometric mycobacterial culture. Acid-fast isolates were identified by a multiplex polymerase chain reaction (PCR) that discriminates among members of the Mycobacterium avium complex (MAC). Histopathologic evaluations were completed, and animals were tested for antibodies using a Johne's enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion. In addition, 104 fecal samples from tule elk remaining in the herd were collected from the ground and submitted for radiometric mycobacterial culture. No gross lesions were detected in any of the hunter-killed animals. Mycobacterium avium subsp. paratuberculosis (MAP) was cultured once from ileocecal tissue of one adult elk and was determined to be a strain (A18) found commonly in infected cattle. One or more isolates of Mycobacterium avium subsp. avium (MAA) were isolated from tissues of five additional adult elk. Gastrointestinal tract and lymph node tissues from 17 of the 37 elk (46%) examined had histopathologic lesions commonly seen with mycobacterial infection; however, acid-fast bacteria were not observed. All MAC infections were detected from adult elk (P = 0.023). In adult elk, a statistically significant association was found between MAA infection and ELISA sample-to-positive ratio (S/P) > or = 0.25 (P=0.021); four of five MAA culture-positive elk tested positive by ELISA. Sensitivity and specificity of ELISA S/P > or = 0.25 for detection of MAA in adult elk were 50% and 93%, respectively. No significant associations were found between MAC infection and sex or histopathologic lesions. Bacteriologic culture confirmed infection with MAP and MAA in this asymptomatic tule elk herd. The Johne's ELISA was useful in signaling mycobacterial infection on a population basis but could not discriminate between MAA and MAP antibodies. The multiplex PCR was useful in discriminating among the closely related species belonging to MAC.  相似文献   

20.
Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号