首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thaxtomin A is the main phytotoxin produced by Streptomyces scabies, a causal agent of potato scab. Thaxtomin A is a yellow compound composed of 4-nitroindol-3-yl-containing 2,5-dioxopiperazine. A collection of nonpathogenic streptomycetes isolated from potato tubers and microorganisms recovered from a thaxtomin A solution were examined for the ability to grow in the presence of thaxtomin A as a sole carbon or nitrogen source. Three bacterial isolates and two fungal isolates grew in thaxtomin A-containing media. Growth of these organisms resulted in decreases in the optical densities at 400 nm of culture supernatants and in 10% reductions in the thaxtomin A concentration. The fungal isolates were identified as a Penicillium sp. isolate and a Trichoderma sp. isolate. One bacterial isolate was associated with the species Ralstonia pickettii, and the two other bacterial isolates were identified as Streptomyces sp. strains. The sequences of the 16S rRNA genes were determined in order to compare thaxtomin A-utilizing actinomycetes to the pathogenic organism S. scabies and other Streptomyces species. The nucleotide sequences of the γ variable regions of the 16S ribosomal DNA of both thaxtomin A-utilizing actinomycetes were identical to the sequence of Streptomyces mirabilis ATCC 27447. When inoculated onto potato tubers, the three thaxtomin A-utilizing bacteria protected growing plants against common scab, but the fungal isolates did not have any protective effect.  相似文献   

2.
The aim of this study was to characterize and compare the bacterial community structure of two distinct oil samples from a petroleum field in Brazil by using both molecular, based on the construction of 16S rRNA gene libraries, and cultivation methods. Statistical comparisons of libraries based on Amplified Ribosomal DNA Restriction Analysis (ARDRA) data revealed no significant differences between the communities recovered in the non-biodegraded (NBD) and highly biodegraded oils (HBD). BlastN analysis of the 16S rRNA gene sequences representative of distinct ribotypes from both oils showed the presence of nine different bacterial genera in these samples, encompassing members of the genera Arcobacter, Halanaerobium, Marinobacter, Propionibacterium, Streptomyces, Leuconostoc, Acinetobacter, Bacillus and Streptococcus. Enrichments obtained using oil as inoculum and sole carbon source yielded bacterial isolates showing high 16S rRNA gene sequence similarity with Achromobacter xylosoxidans, Bacillus subtilis, Brevibacillus sp., Dietzia sp. and Methylobacterium sp. Comparison between the data obtained using cultivation-independent and enrichment cultures suggests that different selection of community members may occur when using distinct approaches. All the organisms found, except for Leuconostoc sp. and Streptococus sp., have been previously reported in the literature as hydrocarbon degraders and/or associated to oil field environments.  相似文献   

3.
Substantial spatial variability in the degradation rate of the phenyl-urea herbicide isoproturon (IPU) [3-(4-isopropylphenyl)-1,1-dimethylurea] has been shown to occur within agricultural fields, with implications for the longevity of the compound in the soil, and its movement to ground- and surface water. The microbial mechanisms underlying such spatial variability in degradation rate were investigated at Deep Slade field in Warwickshire, United Kingdom. Most-probable-number analysis showed that rapid degradation of IPU was associated with proliferation of IPU-degrading organisms. Slow degradation of IPU was linked to either a delay in the proliferation of IPU-degrading organisms or apparent cometabolic degradation. Using enrichment techniques, an IPU-degrading bacterial culture (designated strain F35) was isolated from fast-degrading soil, and partial 16S rRNA sequencing placed it within the Sphingomonas group. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified bacterial community 16S rRNA revealed two bands that increased in intensity in soil during growth-linked metabolism of IPU, and sequencing of the excised bands showed high sequence homology to the Sphingomonas group. However, while F35 was not closely related to either DGGE band, one of the DGGE bands showed 100% partial 16S rRNA sequence homology to an IPU-degrading Sphingomonas sp. (strain SRS2) isolated from Deep Slade field in an earlier study. Experiments with strains SRS2 and F35 in soil and liquid culture showed that the isolates had a narrow pH optimum (7 to 7.5) for metabolism of IPU. The pH requirements of IPU-degrading strains of Sphingomonas spp. could largely account for the spatial variation of IPU degradation rates across the field.  相似文献   

4.
Bacterial mats in sulfide aquatic systems of North Caucasus are basically composed by the species of genera Thiothrix and Sphaerotilus. Additionally, several non-filamentous sulfur-oxidizing bacteria were isolated from the mats and several minor 16S rRNA phylotypes were found in clone libraries from these mats. The minor components were affiliated with Proteobacteria, Chlorobia, Cyanobacteria and Firmicutes. Even in an individual mat population heterogeneity of Thiothrix spp. was revealed by analysis of 16S rRNA gene and RAPD-PCR. Five Thiothrix isolates were described as new species Thiothrix caldifontis sp. nov. and Thiothrix lacustris sp. nov. In the Thiothrix-Sphaerotilus type of bacterial mat the proportion of dominant organisms might be influenced by sulfide concentration in the spring water. The higher sulfide concentration (more than 10 mg/1) in the spring water is more favorable for the development of bacterial mats with dominant Thiothrix organisms than for Thiothrix-Sphaerotilus type of sulfur mat.  相似文献   

5.
The soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, microbial responses to climate warming or cooling remain poorly understood, limiting our ability to predict the consequences of future climate changes. To address this issue, it is critical to identify microbes sensitive to climate change and key driving factors shifting microbial communities. In this study, alpine soil transplant experiments were conducted downward or upward along an elevation gradient between 3,200 and 3,800 m in the Qinghai-Tibet plateau to simulate climate warming or cooling. After a 2-year soil transplant experiment, soil bacterial communities were analyzed by pyrosequencing of 16S rRNA gene amplicons. The results showed that the transplanted soil bacterial communities became more similar to those in their destination sites and more different from those in their “home” sites. Warming led to increases in the relative abundances in Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria and decreases in Acidobacteria, Betaproteobacteria, and Deltaproteobacteria, while cooling had opposite effects on bacterial communities (symmetric response). Soil temperature and plant biomass contributed significantly to shaping the bacterial community structure. Overall, climate warming or cooling shifted the soil bacterial community structure mainly through species sorting, and such a shift might correlate to important biogeochemical processes such as greenhouse gas emissions. This study provides new insights into our understanding of soil bacterial community responses to climate warming and cooling.  相似文献   

6.
Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.  相似文献   

7.
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.  相似文献   

8.
We developed single-point genome signature tags (SP-GSTs), a generally applicable, high-throughput sequencing-based method that targets specific genes to generate identifier tags from well-defined points in a genome. The technique yields identifier tags that can distinguish between closely related bacterial strains and allow for the identification of microbial community members. SP-GSTs are determined by three parameters: (i) the primer designed to recognize a conserved gene sequence, (ii) the anchoring enzyme recognition sequence, and (iii) the type IIS restriction enzyme which defines the tag length. We evaluated the SP-GST method in silico for bacterial identification using the genes rpoC, uvrB, and recA and the 16S rRNA gene. The best distinguishing tags were obtained with the restriction enzyme Csp6I upstream of the 16S rRNA gene, which discriminated all organisms in our data set to at least the genus level and most organisms to the species level. The method was successfully used to generate Csp6I-based tags upstream of the 16S rRNA gene and allowed us to discriminate between closely related strains of Bacillus cereus and Bacillus anthracis. This concept was further used successfully to identify the individual members of a defined microbial community.  相似文献   

9.
The diversity and dynamics of bacterial populations in Saint-Nectaire, a raw-milk, semihard cheese, were investigated using a dual culture-dependent and direct molecular approach combining single-strand conformation polymorphism (SSCP) fingerprinting and sequencing of 16S rRNA genes. The dominant clones, among 125 16S rRNA genes isolated from milk, belonged to members of the Firmicutes (58% of the total clones) affiliated mainly with the orders Clostridiales and the Lactobacillales, followed by the phyla Proteobacteria (21.6%), Actinobacteria (16.8%), and Bacteroidetes (4%). Sequencing the 16S rRNA genes of 126 milk isolates collected from four culture media revealed the presence of 36 different species showing a wider diversity in the Gammaproteobacteria phylum and Staphylococcus genus than that found among clones. In cheese, a total of 21 species were obtained from 170 isolates, with dominant species belonging to the Lactobacillales and subdominant species affiliated with the Actinobacteria, Bacteroidetes (Chryseobacterium sp.), or Gammaproteobacteria (Stenotrophomonas sp.). Fingerprinting DNA isolated from milk by SSCP analysis yielded complex patterns, whereas analyzing DNA isolated from cheese resulted in patterns composed of a single peak which corresponded to that of lactic acid bacteria. SSCP fingerprinting of mixtures of all colonies harvested from plate count agar supplemented with crystal violet and vancomycin showed good potential for monitoring the subdominant Proteobacteria and Bacteroidetes (Flavobacteria) organisms in milk and cheese. Likewise, analyzing culturable subcommunities from cheese-ripening bacterial medium permitted assessment of the diversity of halotolerant Actinobacteria and Staphylococcus organisms. Direct and culture-dependent approaches produced complementary information, thus generating a more accurate view of milk and cheese microbial ecology.  相似文献   

10.
Soil bacterial population dynamics were examined in several crude-oil-contaminated soils to identify those organisms associated with alkane degradation and to assess patterns in microbial response across disparate soils. Seven soil types obtained from six geographically distinct areas of the United States (Arizona, Oregon, Indiana, Virginia, Oklahoma, and Montana) were used in controlled contamination experiments containing 2% (wt/wt) crude oil spiked with [1-14C]hexadecane. Microbial populations present during hydrocarbon degradation were analyzed using both 16S rRNA gene sequence analysis and by traditional methods for cultivating hydrocarbon-oxidizing bacteria. After a 50-day incubation, all seven soils showed comparable hydrocarbon depletion, where >80% of added crude oil was depleted and approximately 40 to 70% of added [14C]hexadecane was converted to 14CO2. However, the initial rates of hydrocarbon depletion differed up to 10-fold, and preferential utilization of shorter-chain-length n-alkanes relative to longer-chain-length n-alkanes was observed in some soils. Distinct microbial populations developed, concomitant with crude-oil depletion. Phylogenetically diverse bacterial populations were selected across different soils, many of which were identical to hydrocarbon-degrading isolates obtained from the same systems (e.g., Nocardioides albus, Collimonas sp., and Rhodococcus coprophilus). In several cases, soil type was shown to be an important determinant, defining specific microorganisms responding to hydrocarbon contamination. However, similar Rhodococcus erythropolis-like populations were observed in four of the seven soils and were the most common hydrocarbon-degrading organisms identified via cultivation.  相似文献   

11.
Gulls are prevalent in beach environments and can be a major source of fecal contamination. Gulls have been shown to harbor a high abundance of fecal indicator bacteria (FIB), such as Escherichia coli and enterococci, which can be readily detected as part of routine beach monitoring. Despite the ubiquitous presence of gull fecal material in beach environments, the associated microbial community is relatively poorly characterized. We generated comprehensive microbial community profiles of gull fecal samples using Roche 454 and Illumina MiSeq platforms to investigate the composition and variability of the gull fecal microbial community and to measure the proportion of FIB. Enterococcaceae and Enterobacteriaceae were the two most abundant families in our gull samples. Sequence comparisons between short-read data and nearly full-length 16S rRNA gene clones generated from the same samples revealed Catellicoccus marimammalium as the most numerous taxon among all samples. The identification of bacteria from gull fecal pellets cultured on membrane-Enterococcus indoxyl-β-d-glucoside (mEI) plates showed that the dominant sequences recovered in our sequence libraries did not represent organisms culturable on mEI. Based on 16S rRNA gene sequencing of gull fecal isolates cultured on mEI plates, 98.8% were identified as Enterococcus spp., 1.2% were identified as Streptococcus spp., and none were identified as C. marimammalium. Illumina deep sequencing indicated that gull fecal samples harbor significantly higher proportions of C. marimammalium 16S rRNA gene sequences (>50-fold) relative to typical mEI culturable Enterococcus spp. C. marimammalium therefore can be confidently utilized as a genetic marker to identify gull fecal pollution in the beach environment.  相似文献   

12.
Modified-atmosphere packaging (MAP) of foods in combination with low-temperature storage extends product shelf life by limiting microbial growth. We investigated the microbial biodiversity of MAP salmon and coalfish by using an explorative approach and analyzing both the total amounts of bacteria and the microbial group composition (both aerobic and anaerobic bacteria). Real-time PCR analyses revealed a surprisingly large difference in the microbial loads for the different fish samples. The microbial composition was determined by examining partial 16S rRNA gene sequences from 180 bacterial isolates, as well as by performing terminal restriction fragment length polymorphism analysis and cloning 92 sequences from PCR products of DNA directly retrieved from the fish matrix. Twenty different bacterial groups were identified. Partial least-squares (PLS) regression was used to relate the major groups of bacteria identified to the fish matrix and storage time. A strong association of coalfish with Photobacterium phosphoreum was observed. Brochothrix spp. and Carnobacterium spp., on the other hand, were associated with salmon. These bacteria dominated the fish matrixes after a storage period. Twelve Carnobacterium isolates were identified as either Carnobacterium piscicola (five isolates) or Carnobacterium divergens (seven isolates), while the eight Brochothrix isolates were identified as Brochothrix thermosphacta by full-length 16S rRNA gene sequencing. Principal-component analyses and PLS analysis of the growth characteristics (with 49 different substrates) showed that C. piscicola had distinct substrate requirements, while the requirements of B. thermosphacta and C. piscicola were quite divergent. In conclusion, our explorative multivariate approach gave a picture of the total microbial biodiversity in MAP fish that was more comprehensive than the picture that could be obtained previously. Such information is crucial in controlled food production when, for example, the hazard analysis of critical control points principle is used.  相似文献   

13.
The use of indigenous bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon pollutants. The isolation and selection of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most promising strains for site decontamination. Two different media, a minimal medium supplemented with a mixture of polycyclic aromatic hydrocarbons and a MS medium supplemented with triphenyltetrazolium chloride, were used for the isolation of bacterial strains from two hydrocarbon contaminated soils and from their enrichment phases. The hydrocarbon degradation abilities of these bacterial isolates were easily and rapidly assessed using the 2,6-dichlorophenol indophenol assay. The diversity of the bacterial communities isolated from these two soil samples and from their enrichment phases was evaluated by the combination of a bacterial clustering method, fluorescence ITS-PCR, and bacterial identification by 16S rRNA sequencing. Different PCR-based assays were performed in order to detect the genes responsible for hydrocarbon degradation. The best hydrocarbon-degrading bacteria, including Arthrobacter sp., Enterobacter sp., Sphingomonas sp., Pseudomonas koreensis, Pseudomonas putida and Pseudomonas plecoglossicida, were isolated directly from the soil samples on minimal medium. The nahAc gene was detected only in 13 Gram-negative isolates and the sequences of nahAc-like genes were obtained from Enterobacter, Stenotrophomonas, Pseudomonas brenneri, Pseudomonas entomophila and P. koreensis strains. The combination of isolation on minimal medium with the 2,6-dichlorophenol indophenol assay was effective in selecting different hydrocarbon-degrading strains from 353 isolates.  相似文献   

14.
A microcosm enrichment approach was employed to isolate bacteria which are representative of long-term biphenyl-adapted microbial communities. Growth of microorganisms was stimulated by incubating soil and sediment samples from polluted and nonpolluted sites with biphenyl crystals. After 6 months, stable population densities between 8 × 109 and 2 × 1011 CFU/ml were established in the microcosms, and a large percentage of the organisms were able to grow on biphenyl-containing minimal medium plates. A total of 177 biphenyl-degrading strains were subsequently isolated and characterized by their ability to grow on biphenyl in liquid culture and to accumulate a yellow meta cleavage product when they were sprayed with dihydroxybiphenyl. Isolates were identified by using a polyphasic approach, including fatty acid methyl ester (FAME) analysis, 16S rRNA gene sequence comparison, sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, and genomic fingerprinting based on sequence variability in the 16S-23S ribosomal DNA intergenic spacer region. In all of the microcosms, isolates identified as Rhodococcus opacus dominated the cultivable microbial community, comprising a cluster of 137 isolates with very similar FAME profiles (Euclidean distances, <10) and identical 16S rRNA gene sequences. The R. opacus isolates from the different microcosms studied could not be distinguished from each other by any of the fingerprint methods used. In addition, three other FAME clusters were found in one or two of the microcosms analyzed; these clusters could be assigned to Alcaligenes sp., Terrabacter sp., and Bacillus thuringiensis on the basis of their FAME profiles and/or comparisons of the 16S rRNA gene sequences of representatives. Thus, the microcosm enrichments were strongly dominated by gram-positive bacteria, especially the species R. opacus, independent of the pollution history of the original sample. R. opacus, therefore, is a promising candidate for development of effective long-term inocula for polychlorinated biphenyl bioremediation.  相似文献   

15.
Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab''s nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus.  相似文献   

16.
The Tipula abdominalis larval hindgut microbial community presumably facilitates digestion of the lignocellulosic diet. The microbial community was investigated through characterization of bacterial isolates and analysis of 16S rRNA gene clone libraries. This initial study revealed novel bacteria and provides a framework for future studies of this symbiosis.  相似文献   

17.
The use of 16S rRNA gene has been a “golden” method to determine the diversity of microbial communities in environmental samples, phylogenetic relationships of prokaryotes and taxonomic position of newly isolated organisms. However due to the presence of multiple heterogeneous 16S rRNA gene copies in many strains, the interpretation of microbial ecology via 16S rRNA sequences is complicated. Purpose of present paper is to demonstrate the extent to which the multiple heterogeneous 16S rRNA gene copies affect RFLP patterns and DGGE profiles by using the genome database. In present genome database, there are 782 bacterial strains in total whose genomes have been completely sequenced and annotated. Among the total strains, 639 strains (82%) possess multiple 16S rRNA gene copies, 415 strains (53%) whose multiple copies are heterogeneous in sequences as revealed by alignment, 236 strains (30%) whose multiple copies show different restrict patterns by CSP6I+HinfI, MspI+RsaI or HhaI as analyzed in silico. Polymorphisms of the multiple copies in certain strains were further characterized by G+C% and phy-logentic distances based on the sequences of V3 region, which are linked to DGGE patters. Polymorphisms of a few strains were shown as examples. Using artificial communities, it is demonstrated that the presence of multiple heterogeneous 16S rRNA gene copies potentially leads to over-estimation of the diversity of a community. It is suggested that care must be taken when interpreting 16S rRNA-based RFLP and DGGE data and profiling an environmental community.  相似文献   

18.
Microflora is an integral part of soil ecosystem, in which bacteria are the largest group of soil microbes. This is a pioneer study for establishing baseline data on the diversity of soil bacteria among different regions in Kuwait. The aim is to understand biodiversity in different settings, how bacteria adapt to different niches in the environment as well as in different hosts. The identification of bacterial 16S rRNA molecules from environmental soil samples was investigated. Genomic Deoxyribonucleic acid DNA was extracted from 25 soil samples derived from five different test regions in the Umm Al-Namil Island, Kuwait. After amplification of bacterial 16S rRNA molecules by the Polymerase chain reaction PCR, the products were characterized and complex band patterns were obtained, indicating high bacterial diversity. A sample of the 16 s rRNA amplicons were sequenced in order to identify the species. The spatial distribution of bacterial taxa in the different soil samples was homogeneous, suggesting a stable and widespread community. Forty-nine isolates from Umm Al-Namil island were identified by comparative analysis of partial 16S rRNA gene sequences. Phylogenetic analysis was carried out in order to study the connection between the isolates to identify species. A large proportion of these isolates represent correspond to known or novel species within the Pseudomonus and Bacillus genera, which are common soil bacteria. Our results provided a reference for future studies to facilitate bacterial identification and ecological research in Kuwait.  相似文献   

19.
Earthworms ingest large amounts of soil and have the potential to radically alter the biomass, activity, and structure of the soil microbial community. In this study, the diversity of eight bacterial groups from fresh soil, gut, and casts of the earthworms Lumbricus terrestris and Aporrectodea caliginosa were studied by single-strand conformation polymorphism (SSCP) analysis using both newly designed 16S rRNA gene-specific primer sets targeting Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Firmicutes and a conventional universal primer set for SSCP, with RNA and DNA as templates. In parallel, the study of the relative abundance of these taxonomic groups in the same samples was performed using fluorescence in situ hybridization. Bacteroidetes, Alphaproteobacteria, and Betaproteobacteria were predominant in communities from the soil and worm cast samples. Representatives of classes Flavobacteria and Sphingobacteria (Bacteroidetes) and Pseudomonas spp. (low-abundant Gammaproteobacteria) were detected in soil and worm cast samples with conventional and taxon-targeting SSCP and through the sequence analysis of 16S rRNA clone libraries. Physiologically active unclassified Sphingomonadaceae (Alphaproteobacteria) and Alcaligenes spp. (Betaproteobacteria) also maintained their diversities during transit through the earthworm intestine and were found on taxon-targeting SSCP profiles from the soil and worm cast samples. In conclusion, our results suggest that some specific bacterial taxonomic groups maintain their diversity and even increase their relative numbers during transit through the gastrointestinal tract of earthworms.  相似文献   

20.
Plagiodera versicolora (Laicharting, 1781) (Coleoptera: Chrysomelidae) is an important forest pest which damages many trees such as willow, poplar, and hazelnut. In order to find new microbes that can be utilized as a possible microbial control agent against this pest, we investigated the culturable bacterial flora of it and tested the isolated bacteria against P. versicolora larvae and adults. We were able to isolate nine bacteria from larvae and adults. The isolates were characterized using a combination of morphological, biochemical, and physiological methods. Additionally, we sequenced the partial sequence of the 16S rRNA gene to verify conventional identification results. Based on characterization studies, the isolates were identified as Staphylococcus sp. Pv1, Rahnella sp. Pv2, Rahnella sp. Pv3, Rahnella sp. Pv4, Rahnella sp. Pv5, Pantoea agglomerans Pv6, Staphylococcus sp. Pv7, Micrococcus luteus Pv8, and Rahnella sp. Pv9. The highest insecticidal activity against larvae and adults was obtained from M. luteus Pv8 with 50 and 40 % mortalities within 10 days after treatment, respectively. Extracellular enzyme activity of the bacterial isolates such as amylase, proteinase, lipase, cellulose, and chitinase was also determined. Consequently, our results show that M. luteus Pv8 might be a good candidate as a possible microbial control agent against P. versicolora and were discussed with respect to biocontrol potential of the bacterial isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号