首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
River hydrogeomorphology is a potential predictor of ecosystem and assemblage variation. We tested for fish assemblage variation as a function of hydrogeomorphology in a Midwestern US large river, the Wabash River. Fish data were classified by taxonomy and traits and we tested if assemblages varied with river hydrogeomorphology or river distance, defined into 10‐km distinct reaches. Three unique geomorphological units, Functional Process Zones (FPZ), were identified using an ArcGIS hydrogeomorphic model, based primarily on channel width, floodplain width, and down valley slope. Five locations were identified as FPZ A with narrow stream channel, high down valley slope, and an expansive floodplain. Ten locations were identified as FPZ B with a wide river channel and wide floodplain. Thirty‐five locations were identified as FPZ C with wide river channel and a constrained floodplain. The sites were categorized into three stream orders: 5, 6, and 7. We found hydrogeomorphology classified by unique FPZs or by river distance influenced taxonomic and functional fish assemblages for the Wabash River. There was high overlap among fish occurrences among FPZs, but nine species resulted as significant indicators of specific FPZs. Five traits were significant indicators of FPZs: an intermediate Swim Factor score, medium tolerance to silt, small‐large stream size preference, and two Shape Factor categories. Our conclusions are that fish assemblages respond strongly to local geomorphology and river distance, fitting the riverine ecosystem synthesis and the river continuum concept.  相似文献   

2.
3.
4.
The Upper Mississippi River System, including the Illinois River, has been invaded by a number of nonnative species including silver carp Hypophthalmichthys molitirx and bighead carp H. nobilis, collectively referred to here as Asian carps. Silver carp densities in the Illinois River have increased dramatically and now represent some of the highest densities of wild silver carp anywhere in the world. Asian carps have the potential to alter existing ecosystems by consuming planktonic resources and therefore, could have the ability to alter existing fish communities as most fishes are dependent on planktonic resources during early development. However, identifying the relationship of fish community structure to the establishment of Asian carps has yet to be thoroughly investigated. Using long-term fish community data collected by the Upper Mississippi River Restoration’s Long Term Resource Monitoring element, we investigate changes in fish community structure pre- and post-establishment of Asian carps. Significant differences in the pre- and post-establishment communities were observed for the majority of gears and habitats. Species contributing to changes between establishment periods included most sportfish species and catostomids, which were less abundant post-establishment of Asian carps, while shortnose gar, grass carp, and emerald shiner were more abundant. While our analyses show Asian carps are likely contributing to major differences in fish community structure, future research and long-term monitoring should investigate the mechanisms and interactions responsible for community changes as well as identifying any potential concurrent or confounding factors such as changes in river hydrology or sedimentation.  相似文献   

5.
1. Climatic effects are increasingly being recognised as an important factor causing inter‐annual variability in organism abundances in aquatic and terrestrial ecosystems. This study investigated the relationships between water temperature (cumulative degree‐days >12 °C), river discharge (cumulative discharge‐days above basal discharge rate), the position of the North Wall of the Gulf Stream (NWGS), and the 0+ growth (September mean length) and recruitment success (year‐class strength, YCS) of three species of cyprinid fishes in two contrasting English lowland rivers, using a 21‐year dataset. 2. Contrary to the majority of studies on 0+ fishes, growth in the Yorkshire Ouse was most significantly correlated with river discharge, with water temperature of less importance. By contrast, temperature was more influential than discharge in the River Trent, possibly because of its regulated hydrological regime, although none of the relationships were statistically significant for this river. 3. Year‐class strength of roach (Rutilus rutilus) was positively correlated with the position of the NWGS, and there was evidence of synchrony in recruitment success between rivers, but the relationships were poorer for chub (Leuciscus cephalus) and dace (Leuciscus leuciscus). The strongest relationships between YCS and discharge during specific time periods were for when the fish were in their early (especially larval) developmental stages, although none of the relationships were statistically significant because of inter‐annual variations in river discharge relative to the timing of fish hatching. 4. Fishes are key predators in the majority of aquatic ecosystems and, as such, fluctuations in their abundances can have implications for ecosystem functioning as a whole. This study has demonstrated an underlying influence of broad‐scale climatic effects on the recruitment of riverine fishes, in spite of local variations in biotic and abiotic conditions. The relative importance of various abiotic factors on the recruitment success of riverine cyprinid populations varies spatially and temporally. For example, river discharge is likely to be of relatively greater importance in poorly‐structured rivers or those that are prone to large and rapid fluctuations in flow, while temporal variations occur because of inter‐annual differences in river discharge relative to the timing of fish hatching. Biotic factors may also be important determinants of fish recruitment success, especially in rivers with stable and predictable flow regimes.  相似文献   

6.
Off-channel habitats play a crucial role in the life-cycles of many riverine fish species, but lateral movements of fish into these habitats are poorly understood. We tested how flow dynamics affects the movement of fish and shrimps between the main river channel and different types of off-channel habitats: a riverine lake and a wetland. Our study site was the lower Waikato River, North Island, New Zealand, where there are numerous off-channel habitats. Fish were sampled using directional fyke nets. Shortfin eel (Anguilla australis) migrated mostly into the wetland at night, particularly during high river flows. Common bullies (Gobiomorphus cotidianus) were most abundant during the day and in low-discharge conditions, moving mostly into the riverine lake, whereas freshwater shrimp (Paratya curvirostris) moved mostly into the wetland. High numbers of non-native larval common carp (Cyprinus carpio) moved out of the wetland with retreating flood water. This study emphasises the importance of lateral connectivity and flooding in functioning of this river system where numerous native fish, but also exotic fish, used off-channel habitats. Floodplain management strategies should promote ‘controlled connectivity’ measures that provide access for native species at key times while limiting opportunities for introduced species to utilise their favoured off-channel habitats.  相似文献   

7.
Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick’s Index [D M]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R 2 = 0.72; D M: R 2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R 2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R 2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R 2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods.  相似文献   

8.
Native fishes worldwide have declined as a consequence of habitat loss and degradation and introduction of non-native species. In response to these declines, river restoration projects have been initiated to enhance habitat and remove introduced fishes; however, non-native fish removal is not always logistically feasible or socially acceptable. Consequently, managers often seek to enhance degraded habitat in such a way that native fishes can coexist with introduced species. We quantified dynamics of fish communities to three newly constructed side channels in the Provo River, Utah, USA, to determine if and how they promoted coexistence between native fishes (nine species) and non-native brown trout (Salmo trutta L.). Native and introduced fishes responded differently in each side channel as a function of the unique characteristics and histories of side channels. Beaver activity in two of the three side channels caused habitat differentiation or channel isolation that facilitated the establishment of native species. The third side channel had greater connectivity to and similar habitat as the main channel of the Provo River, resulting in a similar fish community to main channel habitats (i.e. dominated by brown trout with only a few native fish species). These results demonstrate the importance of understanding habitat preferences for each species in a community to guide habitat enhancement projects and the need to create refuge habitats for native fishes.  相似文献   

9.
Daphnia lumholtzi comprises a substantial component of the zooplankton community during mid‐ to late‐summer in Lake Chautauqua, a floodplain lake along the Illinois River near Havana, Illinois. In order to quantify the utilization of D. lumholtzi by juvenile fishes, diet analyses were conducted for seven juvenile fish species collected from Lake Chautauqua during the 2001 annual drawdown period. Freshwater drum Aplodinotus grunniens and emerald shiner Notropis atherinoides demonstrated negative selectivity for D. lumholtzi relative to native zooplankton species whereas four species of fish (bluegill Lepomis macrochirus, white bass Morone chrysops, white crappie Pomoxis annularis and black crappie Pomoxis nigromaculatus) consumed substantial amounts of D. lumholtzi. Although selectivity values for D. lumholtzi varied among these fish species, positive selection for D. lumholtzi increased similarly among larger size classes of each fish species, and corresponded with ontogenetic shifts in diet. Mean body length of D. lumholtzi consumed by 20–69 mm LT juvenile fishes ranged from 0·75 to 0·99 mm with a calculated total length range of 2·0–2·6 mm. Results from this study provide evidence that high abundances of D. lumholtzi in mid‐ to late‐summer provide an additional food source for several juvenile fish species during a time when abundances of large native cladoceran species (i.e. Daphnia) are low, and juvenile fishes are searching for larger prey associated with ontogenetic shifts from zooplankton to macroinvertebrates and fishes. Because zooplankton production is typically lower in rivers than in lakes, survivorship of juvenile fishes produced in floodplain lakes may be higher in riverine systems if they are not reliant on zooplankton as a primary food resource. Therefore, high abundances of D. lumholtzi may benefit juvenile fishes in managed floodplain lakes, such as Lake Chautauqua, by increasing growth and facilitating the transition from zooplanktivory to insectivory or piscivory.  相似文献   

10.
Naturally occurring stable isotope and trace elemental markers in otoliths have emerged as powerful tools for determining natal origins and environmental history of fishes in a variety of marine and freshwater environments. However, few studies have examined the applicability of this technique in large river-floodplain ecosystems. This study evaluated otolith microchemistry and stable isotopic composition as tools for determining environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes in Illinois and Missouri, USA. Fishes were collected from 14 sites and water samples obtained from 16 sites during summer and fall 2006 and spring 2007. Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) and concentrations of a suite of trace elements; otoliths were also analyzed for carbon isotopic composition (δ13C). Tributaries, floodplain lakes, and the Mississippi and Lower Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected in fish otoliths. Fish from tributaries on the Missouri and Illinois sides of the middle Mississippi River could also be distinguished from one another by their elemental and isotopic fingerprints. Linear discriminant function analysis of otolith chemical signatures indicated that fish could be classified back to their environment of capture (Mississippi River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, or lower Missouri River) with 71–100% accuracy. This study demonstrates the potential applicability of otolith microchemistry and stable isotope analyses to determine natal origins and describe environmental history of fishes in the Middle Mississippi River, its tributaries, and floodplain lakes. The ability to reconstruct environmental history of individual fish using naturally occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Mississippi River provided by fishes that emigrate from floodplain lakes or tributaries.  相似文献   

11.
River hydrogeomorphology is a major driver shaping biodiversity and community composition. Here, we examine how hydrogeomorphic heterogeneity expressed by Functional Process Zones (FPZs) in river networks is associated with fish assemblage variation. We examined this association in two distinct ecoregions in Mongolia expected to display different gradients of river network hydrogeomorphic heterogeneity. We delineated FPZs by extracting valley‐scale hydrogeomorphic variables at 10 km sample intervals in forest steppe (FS) and in grassland (G) river networks. We sampled fish assemblages and examined variation associated with changes in gradients of hydrogeomorphology as expressed by the FPZs. Thus, we examined assemblage variation as patterns of occurrence‐ and abundance‐based beta diversities for the taxonomic composition of assemblages and as functional beta diversity. Overall, we delineated 5 and 6 FPZs in river networks of the FS and G, respectively. Eight fish species were found in the FS river network and seventeen in the G, four of them common to both ecoregions. Functional richness was correspondingly higher in the G river network. Variation in the taxonomic composition of assemblages was driven by species turnover and was only significant in the G river network. Abundance‐based taxonomic variation was significant in river networks of both ecoregions, while the functional beta diversity results were inconclusive. We show that valley‐scale hydrogeomorphology is a significant driver of variation in fish assemblages at a macrosystem scale. Both changes in the composition of fish assemblages and the carrying capacity of the river network were driven by valley‐scale hydrogeomorphic variables. River network hydrogeomorphology as accounted for in the study has, therefore, the potential to inform macrosystem scale community ecology research and conservation efforts.  相似文献   

12.
Ryukyu-ayu (Plecoglossus altivelis ryukyuensis) is an amphidromous fish species that migrates between the sea and rivers over its one-year life span. Although growth performance during the early marine stage may affect growth in the later riverine stage of this species’ life cycle, no studies have specifically examined this relationship in P. a. ryukyuensis. In the present study, we reconstructed the growth trajectories of P. a. ryukyuensis individuals collected from the Yakugachi River, Amami-Oshima Island, Japan in 2016 (n?=?47) throughout their growth period in both the sea and river by using otolith analysis. Using this, we determined the age and body size of individuals at the time of their upstream migration, as well as their growth rates during the marine and riverine stages. Results showed that body size at upstream migration significantly affected body size at the riverine stage, indicating that juveniles with larger body size in the sea had better growth performance in the river. Individuals with higher growth rates during the marine stage tended to enter the river younger and at larger body sizes than those with lower marine growth rates. Our results demonstrated the close linkage between the growth performance in the sea and in rivers of P. a. ryukyuensis. This information will contribute to better understanding variations in growth patterns of this endangered species and potentially aid in its conservation.  相似文献   

13.
Little information is available regarding the time scale over which tissue fatty acid (FA) profiles change when fish transition between prey resources with different FA profiles, specifically when fish move from a main river channel to a floodplain habitat. The objective of this study was to evaluate changes in the FA composition of muscle, liver, and adipose fin tissues of channel catfish Ictalurus punctatus transferred from the Kaskaskia River, Illinois to earthen ponds at the Center for Fisheries, Aquaculture, and Aquatic Sciences Pond Facility, Makanda, Illinois, mimicking migration from river to floodplain habitat. Over time, n‐3 and C18 polyunsaturated FA (C18 PUFA) decreased in all tissues, whereas monounsaturated fatty acids (MUFA) increased with pond residence time. Liver profiles changed more rapidly than the muscle or adipose fin profiles (significant change in <2 weeks vs ~10 weeks). The results provide some insight regarding the timing of tissue FA profile change in channel catfish moving between distinct habitats with different prey resources. Results also suggest that adipose fin tissue samples may be a less invasive alternative to muscle tissue for analysis of FA profiles in channel catfish; however, issues with reclassification/identification accuracy using adipose fin tissue must be addressed in order for this approach to be fully justified.  相似文献   

14.
Using natural abundances of stable carbon (δ13C) and nitrogen (δ15N) isotopes, we quantified spatial and temporal patterns of carbon flow through the main channel food web in the lowland section of New Zealand’s longest river, the Waikato River. The study was undertaken with the objective of determining whether the Waikato River conforms to contemporary theoretical concepts regarding carbon flow in large river food webs. Potential organic carbon sources and invertebrate and fish consumers were sampled from three different hydrogeomorphic zones on six occasions, representing a range of seasonal and flow conditions. In line with the predictions of the riverine productivity model and riverine ecosystem synthesis, autochthonous algae and biofilms were the most important basal carbon source contributing to consumer biomass. These were often supported by C3 aquatic macrophytes and allochthonous C3 riparian plants. The relative importance of organic carbon sources differed between zones and appeared to change depending on season, presumably in response to water temperature and flow, particularly in the unconstrained zone of the lower river. We also demonstrate that to draw robust conclusions, consideration must be given to quantifying the isotopic signatures of organisms lower in the food web, as these can change significantly between sampling times and hydrogeomorphic zones.  相似文献   

15.
Nutrient-rich, turbid river plumes that are common to large lakes and coastal marine ecosystems have been hypothesized to benefit survival of fish during early life stages by increasing food availability and (or) reducing vulnerability to visual predators. However, evidence that river plumes truly benefit the recruitment process remains meager for both freshwater and marine fishes. Here, we use genotype assignment between juvenile and larval yellow perch (Perca flavescens) from western Lake Erie to estimate and compare recruitment to the age-0 juvenile stage for larvae residing inside the highly turbid, south-shore Maumee River plume versus those occupying the less turbid, more northerly Detroit River plume. Bayesian genotype assignment of a mixed assemblage of juvenile (age-0) yellow perch to putative larval source populations established that recruitment of larvae was higher from the turbid Maumee River plume than for the less turbid Detroit River plume during 2006 and 2007, but not in 2008. Our findings add to the growing evidence that turbid river plumes can indeed enhance survival of fish larvae to recruited life stages, and also demonstrate how novel population genetic analyses of early life stages can contribute to determining critical early life stage processes in the fish recruitment process.  相似文献   

16.
17.
Shallow water habitat (SWH) is important for riverine fish and their invertebrate prey, yet the availability of SWH has declined in many systems due to human impacts. We evaluated the potential ecological benefits of restoring SWH by comparing zooplankton and phytoplankton from created backwaters (a floodplain feature connected to the river on the downstream end but disconnected at the upstream end) and chutes (a side channel of the river that diverts flow from the main channel through the chute and back into the main channel) on the lower Missouri River. We tested the hypothesis that backwaters support higher abundances of zooplankton and phytoplankton than chutes using data that were collected during the summer of 2010. As predicted, backwaters had more diverse cladoceran communities and greater abundances of rotifers, copepod nauplii, adult copepods, and cladocerans than chutes. Total algal biovolume was the same in chutes and backwaters; however, phytoplankton taxa richness was higher in backwaters, and there was a greater biovolume of green algae (Chlorophyta), Crypotophyta, cyanobacteria, and Euglenophyta in backwaters than in chutes. Differences in zooplankton and phytoplankton between backwaters and chutes appeared to be related to slower current velocities, longer retention times, and lower levels of turbidity and total suspended solids in backwaters. While chutes have the potential to provide greater habitat diversity than the mainstem, there were no differences in water quality or phytoplankton abundance, community structure, or diversity between these two habitats. Combined, our results suggest that created backwaters initially provide a greater potential food resource for native fishes. However, additional research is needed to determine whether chutes can also develop beneficial shallow water features over a longer period of time.  相似文献   

18.
This study examined how riverine inputs, in particular sediment, influenced the community structure and trophic composition of reef fishes within Rio Bueno, north Jamaica. Due to river discharge a distinct gradient of riverine inputs existed across the study sites. Results suggested that riverine inputs (or a factor associated with them) had a structuring effect on fish community structure. Whilst fish communities at all sites were dominated by small individuals (<20 cm), diversity and total biomass were reduced with increased proximity to the river mouth. The abundance of all fishes, but particularly small-bodied, juvenile and herbivorous fishes was reduced in turbid water when compared to clear-water sites. Results strongly suggest that fluvial sediment inputs may play an important role in structuring fish assemblages even under intense fishing pressure.  相似文献   

19.
Stable isotope analysis of organic matter in sediment records has long been used to track historical changes in productivity and carbon cycling in marine and lacustrine ecosystems. While flow dynamics preclude stratigraphic measurements of riverine sediments, such retrospective analysis is important for understanding biogeochemical cycling in running waters. Unique collections of riverine fish scales were used to analyse δ15N and δ13C variations in the food web of two European rivers that experience different degrees of anthropogenic pressure. Over the past four decades, dissolved inorganic N loading remained low and constant in the Teno River (70°N, Finland); in contrast, N loading increased fourfold in the Scorff River (47°N, France) over the same period. Archived scales of Atlantic salmon parr, a riverine life‐stage that feeds on aquatic invertebrates, revealed high δ15N values in the Scorff River reflecting anthropogenic N inputs to that riverine environment. A strong correlation between dissolved inorganic N loads and δ13C values in fish scales was observed in the Scorff River, whereas no trend was found in the Teno River. This result suggests that anthropogenic N‐nutrients enhanced atmospheric C uptake by primary producers and its transfer to fish. Our results illustrate for the first time that, as for lakes and marine ecosystems, historical changes in anthropogenic N loading can affect C cycling in riverine food webs, and confirm the long‐term interactions between N and C biogeochemical cycles in running waters.  相似文献   

20.
Stream fishes are restricted to specific environments with appropriate habitats for feeding and reproduction. Interactions between streams and surrounding landscapes influence the availability and type of fish habitat, nutrient concentrations, suspended solids, and substrate composition. Valley width and gradient are geomorphological variables that influence the frequency and intensity that a stream interacts with the surrounding landscape. For example, in constrained valleys, canyon walls are steeply sloped and valleys are narrow, limiting the movement of water into riparian zones. Wide valleys have long, flat floodplains that are inundated with high discharge. We tested for differences in fish assemblages with geomorphology variation among stream sites. We selected rivers in similar forested and endorheic ecoregion types of the United States and Mongolia. Sites where we collected were defined as geomorphologically unique river segments (i.e., functional process zones; FPZs) using an automated ArcGIS‐based tool. This tool extracts geomorphic variables at the valley and catchment scales and uses them to cluster stream segments based on their similarity. We collected a representative fish sample from replicates of FPZs. Then, we used constrained ordinations to determine whether river geomorphology could predict fish assemblage variation. Our constrained ordination approach using geomorphology to predict fish assemblages resulted in significance using fish taxonomy and traits in several watersheds. The watersheds where constrained ordinations were not successful were next analyzed with unconstrained ordinations to examine patterns among fish taxonomy and traits with geomorphology variables. Common geomorphology variables as predictors for taxonomic fish assemblages were river gradient, valley width, and valley slope. Significant geomorphology predictors of functional traits were valley width‐to‐floor width ratio, elevation, gradient, and channel sinuosity. These results provide evidence that fish assemblages respond similarly and strongly to geomorphic variables on two continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号