首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yue ZB  Yu HQ  Hu ZH  Harada H  Li YY 《Bioresource technology》2008,99(9):3418-3423
Polyoxyethylene sorbitan monoolate (Tween 80) was used to enhance the anaerobic acidogenesis of Canna indica L. (canna) by rumen culture in this study. Dose of Tween 80 at 1 ml/l enhanced the volatile fatty acids (VFA) production from the acidogenesis of canna compared to the control. However, Tween 80 at higher dosages than 5 ml/l inhibited the rumen microbial activity and reduced the VFA yield. Response surface methodology was successfully used to optimize the VFA yield. A maximum of VFA yield of 0.147 g/g total solids (TS) added was obtained at canna and Tween 80 concentrations of 6.3g TS/l and 2.0 ml/l, respectively. Dosage of Tween 80 at 1-3.75 ml/l reduced the unproductive adsorption of microbes or enzymes on the lignin part in canna and increased microbial activity. A high VFA production was achieved from canna presoaked with Tween 80, suggesting that the structure of canna was disrupted by Tween 80.  相似文献   

2.
Summary There appeared to be a clear correlation between the lignin content (% of TS) of several waste and natural materials and their degradability by rumen microorganisms. Materials with lignin contents higher than 25% were not degraded within 72 h. The effects of Kraft pine lignin and some lignin monomers on filter paper degradation, methane production and CMCase activity were tested. Testing these compounds in concentrations comparable to natural conditions showed minor effects. At higher concentrations p-coumaric acid strongly inhibited cellulose degradation and methane production in batch cultures. Influence of lignin compounds on degradation is discussed in relation to structural effects and enzyme or growth inhibition.  相似文献   

3.
Summary An in vitro continuous fermentation device is described which allows the maintenance of a mixed rumen microbial population under conditions similar to those in the rumen. The differences in flow rates of solids and liquids found in the rumen were established in vitro by means of a simple filter construction. A grass-grain mixture was used as a solid growth substrate. During a test period of 65 days the artificial rumen fermenter showed stable operation with respect to ciliate numbers, fibre degradation and volatile fatty acids production. Values obtained were comparable to those found in vivo. Optimal fibre degradation and volatile fatty acids production were maintained when hydraulic retention times (HRT) ranged from 11 to 14 h. At these HRT-values ciliate numbers were maintained at about 8.5×104 cells per ml. Ciliate numbers declined drastically at HRT-values above 14h. A fermenter inoculated with a small volume of rumen fluid (1:100, v/v) reached normal protozoal numbers, fibre degradation and volatile fatty acids productions after a start up period of only 8 to 10 days. The possible application of rumen microorganisms for an efficient degradation of lignocellulosic waste material in an artificial rumen digester is discussed.  相似文献   

4.
Summary The use of reticulated polyurethane foam as a support material for the immobilization of methanogenic associations and its application to the anaerobic treatment of fine particulate solid wastes was investigated. The colonization of polyurethane support particles in a continuous upflow reactor fed on a mixture of acetate, propionate and butyrate, was both rapid and dense. The combination of rumen microorganisms and colonized support particles in a two-phase digester resulted in an efficient anaerobic decomposition of papermill sludge.  相似文献   

5.
6.
7.
Summary The reducing sugars, glucose, and ethanol produced during growth of the anaerobes Clostridium thermocellum and Acetivibrio cellulolyticus on cellulose were assayed. Zymomonas mobilis was grown under similar conditions and could ferment glucose to ethanol. The ethanol production by the cellulolytic bacteria alone and in co-culture with Zymomonas is described. Approximately 27% of a 1% cellulose substrate could be converted to ethanol by this co-culture.  相似文献   

8.
Cellulose materials can readily be degraded into cellobiose and glucose by hydrolysis of the enzymes cellulase and beta-glucosidase in aqueous media. Product inhibition does, however, retard the reaction rate and reduce productivity. This may be avoided by carrying out the degradation of cellulose in an aqueous two-phase system, which permits the enzymes and the substrate to be partitioned to one phase and the products to be extracted into a second phase. In addition, two-phase systems also allow recycling of the enzymes. Here, three models previously developed for "one-phase" enzymic degradation are compared to data from enzymic degradation in an aqueous two-phase system. The models tested agreed relatively well with batch experiments during a period of 200 h. For one of the models tested, continuous degradation also gave accurate agreement.  相似文献   

9.
A number of kinetic parameters of the lactate dehydrogenases of three rumen bacterial species (Peptostreptococcus productus, Propionibacterium acnes and Actinomyces viscosus), the rumen ciliate Isotricha prostoma and mixed rumen microorganisms (MRM) with respect to NADH, pyruvate, fructose-1,6-diphosphate (FDP) as well as the effects of several nucleotide phosphates were studied.Partially purified LDH of Peptostr. productus had the same kinetic parameters as in crude cell free extracts. Values for Km, determined by Michaelis-Menten kinetics with pyruvate as the substrate, were in the same range for all lactate dehydrogenases. After feeding a cow, changes in the apparent Km and Vmax values for NADH of the total LDH activity in MRM were followed.It is suggested that of the factors studied the ratio NADH/NAD(H) and ATP are the most important regulatory factors for the lactate dehydrogenases of mixed rumen microorganisms.The investigation were supported by the Foundation for Fundamental Biological Research (BION), which is subsidized by the Netherlands Organization for the Advancement of Pure Research (ZWO)  相似文献   

10.
A technique is described for the anaerobic fractionation of oxygen-sensitive material. A Freter-type chamber in which the oxygen concentration is maintained at 2 to 5 μl/liter is used in conjunction with anaerobic chromatographic columns that are exterior to the chamber. The column inlet and outlet are connected via thick-walled polyethylene tubing to access ports in the chamber wall. Anaerobic buffer inside the chamber is pumped from the chamber to equilibrate the column. The oxygen-labile sample then is pumped onto the anaerobic column followed by the elution gradient buffer. Column eluate is returned to a fraction collector inside the chamber. At no stage is the sample exposed to air. This technique has been used effectively for fractionation of highly oxygen-sensitive enzymes from methanogenic bacteria where use of other methods failed.  相似文献   

11.
A total of 20 fungal cultures were isolated from the rumen of cattle fed a high fibre-containing diet. All of the isolates showed polycentric growth patterns and were identified as different strains of Orpinomyces and Anaeromyces. Enzyme assays of most of the isolates showed the highest carboxymethylcellulase (CMCase) and xylanase activities after 96 h of growth and highest avicelase activity after 120 h. Among all enzymes tested, xylanase activity was the highest, followed by CMCase and avicelase. The results of the in vitro fibre digestibility and rumen fermentation analyses revealed that the addition of fungal cultures significantly increased acetate, in vitro dry matter digestibility, partition factor values and microbial biomass synthesis levels. Overall, Orpinomyces spp. were found to be the better enzyme producers and fibre degraders than Anaeromyces spp.  相似文献   

12.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We describe a system for the cultivation of gaseous substrate utilizing microorganisms that overcomes some of the limitations of fixed volume culture vessels and the costs associated with sparging. Cali-5-Bond gas-sampling bag was used as the culture vessel. The bags contain approximately six times more mass of CO than the 40 mL vials at 1 atm of pressure and performed equally to the 40 mL vials in terms of their ability to maintain the composition of the gas over extended incubation times. Experiments using Clostridium ljungdahlii and CO as the sole carbon and energy source in both the gas sampling bag cultivation system and the traditional vial system demonstrated that this culture had a 15x increase in optical density in 24 h of incubation. The gas-sampling bags offer a viable alternative to gas sparging while overcoming the limitations of fixed volume culture vessels.  相似文献   

14.
Summary The feeding behaviour of the rumen ciliatePolyplastron multivesiculatum has been studied with scanning and transmission electron microscopy. In contrast to other large entodiniomorphs,Polyplastron scarcely attaches to plant substrata such as straw or alfalfa; however, it readily phagocytes cellulose fibres (like epidermal bristles of alfalfa) suspended in the rumen fluid.The different stages of ingestion and intracellular degradation of this particular substrate are described at the ultrastructural level.Engulfment involves active movements of the vestibular lips. The digestion follows a peculiar pattern (permeative way): the cellulose substrate is gradually decomposed in situ inside the primary digestive vacuole without large fragmentation or pinching off of small vesicles. Thus degradation products are not stored in secondary vesicular systems as they are for other plant substrates (cytotic way).Thus, there is no single or general pattern of cellulosic structures lysis in entodiniomorph rumen ciliates. Rather, several pathways can be observed, probably according to the nature of the ingested plant material.  相似文献   

15.
Summary A novel apparatus with an L-shaped test tube was developed for anaerobic cell cultivation. Anaerobic condition was achieved without the rigorous gassing with CO2 during the various stages of medium preparation. dispensation and cell inoculation. The growth of both moderate and strict anaerobes in this apparatus were similar to those obtained with the glove box method.  相似文献   

16.
The activities of cellulolytic and xylanolytic enzymes produced by an anaerobic fungus (R1) which resembled Neocallimastix sp. were investigated. Carboxymethylcellulase (CMCase), cellobiase, and filter paper (FPase) activities had pH optima of 6.0, 5.5, and 6.0, respectively. CMCase and cellobiase activities both had a temperature optimum of 50 degrees C, whereas FPase had an optimum of 45 degrees C. The pH and temperature optima for xylanase activity were pH 6.0 and 50 degrees C, respectively. Growth of the fungus on wheat straw, wheat straw holocellulose, or cellulose resulted in substantial colonization, with at least 43 to 58% losses in substrate dry matter and accumulation of comparable amounts of formate. This end product was correlated to apparent loss of substrate dry weight and could be used as an indicator of fungal growth. Milling of wheat straw did not enhance the rate or extent of substrate degradation. Growth of the R1 isolate on the above substrates or xylan also resulted in accumulation of high levels of xylanase activity and lower cellulase activities. Of the cellulases, CMCase was the most active and was associated with either low or trace amounts of cellobiase and FPase activities. During growth on xylan, reducing sugars, including arabinose and xylose, rapidly accumulated in the medium. Xylose and other reducing sugars, but not arabinose, were subsequently used for growth. Reducing sugars also accumulated, but not as rapidly, when the fungus was grown on wheat straw, wheat straw holocellulose, or cellulose. Xylanase activities detected during growth of R1 on media containing glucose, xylose, or cellobiose suggested that enzyme production was constitutive.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The anaerobic digestion of a cellulose-enriched fraction of domestic refuse by means of rumen microorganisms in an "artificial rumen" digester was studied. Various combinations of solid and liquid retention times and loading rates were applied to establish optimum conditions for the acidogenic phase digestion of the refuse fraction. An optimal substrate conversion of about 72% was obtained at a loading rate of 23.4 g volatile solids (VS)/L d and a solids retention time of 90 h. Variation of dilution rate between 1.04 and 3.14 fermentor volume turnovers per day had no effect on degradation efficiency. At a loading rate of 23.4 g VS/L d a differential removal rate of solids and liquids appeared to be necessary to obtain an effective degradation of the refuse fraction.  相似文献   

18.
19.
20.
Ruminant animals digest cellulose via a symbiotic relationship with ruminal microorganisms. Because feedstuffs only remain in the rumen for a short time, the rate of cellulose digestion must be very rapid. This speed is facilitated by rumination, a process that returns food to the mouth to be rechewed. By decreasing particle size, the cellulose surface area can be increased by up to 106-fold. The amount of cellulose digested is then a function of two competing rates, namely the digestion rate ( K d) and the rate of passage of solids from the rumen ( K p). Estimation of bacterial growth on cellulose is complicated by several factors: (1) energy must be expended for maintenance and growth of the cells, (2) only adherent cells are capable of degrading cellulose and (3) adherent cells can provide nonadherent cells with cellodextrins. Additionally, when ruminants are fed large amounts of cereal grain along with fiber, ruminal pH can decrease to a point where cellulolytic bacteria no longer grow. A dynamic model based on stella ® software is presented. This model evaluates all of the major aspects of ruminal cellulose degradation: (1) ingestion, digestion and passage of feed particles, (2) maintenance and growth of cellulolytic bacteria and (3) pH effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号