首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vibrio vulnificus is a human and animal pathogen that carries the highest death rate of any food-borne disease agent. It colonizes shellfish and forms biofilms on the surfaces of plankton, algae, fish, and eels. Greater understanding of biofilm formation by the organism could provide insight into approaches to decrease its load in filter feeders and on biotic surfaces and control the occurrence of invasive disease. The capsular polysaccharide (CPS), although essential for virulence, is not required for biofilm formation under the conditions used here. In other bacteria, increased biofilm formation often correlates with increased exopolysaccharide (EPS) production. We exploited the translucent phenotype of acapsular mutants to screen a V. vulnificus genomic library and identify genes that imparted an opaque phenotype to both CPS biosynthesis and transport mutants. One of these encoded a diguanylate cyclase (DGC), an enzyme that synthesizes bis-(3'-5')-cyclic-di-GMP (c-di-GMP). This prompted us to use this DGC, DcpA, to examine the effect of elevated c-di-GMP levels on several developmental pathways in V. vulnificus. Increased c-di-GMP levels induced the production of an EPS that was distinct from the CPS and dramatically enhanced biofilm formation and rugosity in a CPS-independent manner. However, the EPS could not compensate for the loss of CPS production that is required for virulence. In contrast to V. cholerae, motility and virulence appeared unaffected by elevated levels of c-di-GMP.  相似文献   

3.
Throughout most of history, epidemic and pandemic cholera was caused by Vibrio cholerae of the serogroup O1. In 1992, however, a V. cholerae strain of the serogroup O139 emerged as a new agent of epidemic cholera. Interestingly, V. cholerae O139 forms biofilms on abiotic surfaces more rapidly than V. cholerae O1 biotype El Tor, perhaps because regulation of exopolysaccharide synthesis in V. cholerae O139 differs from that in O1 El Tor. Here, we show that all flagellar mutants of V. cholerae O139 have a rugose colony morphology that is dependent on the vps genes. This suggests that the absence of the flagellar structure constitutes a signal to increase exopolysaccharide synthesis. Furthermore, although exopolysaccharide production is required for the development of a three-dimensional biofilm, inappropriate exopolysaccharide production leads to inefficient colonization of the infant mouse intestinal epithelium by flagellar mutants. Thus, precise regulation of exopolysaccharide synthesis is an important factor in the survival of V. cholerae O139 in both aquatic environments and the mammalian intestine.  相似文献   

4.
《Gene》1997,192(1):63-70
The toxin co-regulated pilus (TCP) has been identified as a critical colonization factor in both animal models and humans for Vibrio cholerae O1. The major pilin subunit, TcpA (and also TcpB), is similar to type-4 pilins but TCP probably more appropriately belongs to a sub-class which includes the bundle-forming pilus of enteropathogenic Escherichia coli. The genes for TCP biosynthesis and assembly are clustered with the exception of housekeeping functions such as TcpG (=DsbA, a periplasmic disulfide bond epimerase). The nt sequences from El Tor and classical strains show only minor differences corresponding to the major regulatory regions and in TcpA itself. These differences are thought to account for the alternate conditions required for expression of TCP by the two biotypes and the antigenic variation and lack of cross-protection. Aside from the TcpA only a few of the proteins have had their roles in TCP biogenesis defined. Regulation of TCP is controlled by the ToxR regulon via ToxT with a possible involvement of TcpP and the cAMP-CRP system. Experiments using the infant mouse cholera model have now shown that TCP is a colonization factor and protective antigen for both classical and El Tor O1 strains and in the O139 Bengal serotype and that the mannose-sensitive haemagglutinin pilus does not appear to play a comparable role.  相似文献   

5.
The PhoBR regulatory system is required for the induction of multiple genes under conditions of phosphate limitation. Here, we examine the role of PhoB in biofilm formation and environmental stress response in Vibrio cholerae of the El Tor biotype. Deletion of phoB or hapR enhanced biofilm formation in a phosphate-limited medium. Planktonic and redispersed biofilm cells of the Δ phoB mutant did not differ from wild type for the expression of HapR, suggesting that PhoB negatively affects biofilm formation through an HapR-independent pathway. The Δ phoB mutant exhibited elevated expression of exopolysaccharide genes vpsA and vpsL compared with the wild type. Deletion of hapR enhanced the expression of the positive regulator vpsT , but had no effect on the expression of vpsR . In contrast, deletion of phoB enhanced the expression of the positive regulator vpsR , but had no effect on the expression of hapR and vpsT . The Δ phoB mutant was more sensitive to hydrogen peroxide compared with the wild type and with an isogenic Δ rpoS mutant. Conversely, the Δ phoB mutant was more resistant to acidic conditions and high osmolarity compared with the wild type and with an isogenic Δ rpoS mutant. Taken together, our data suggest that phosphate limitation induces V. cholerae to adopt a free-swimming life style in which PhoB modulates environmental stress response in a manner that differs from the general stress response regulator RpoS.  相似文献   

6.
7.
8.
Quorum sensing controls biofilm formation in Vibrio cholerae   总被引:8,自引:0,他引:8  
  相似文献   

9.
Vibrio cholerae is a versatile bacterium that flourishes in diverse environments, including the human intestine, rivers, lakes, estuaries, and the ocean. Surface attachment is believed to be essential for colonization of all of these natural environments. Previous studies have demonstrated that the vps genes, which encode proteins required for exopolysaccharide synthesis and transport, are required for V. cholerae biofilm development in Luria-Bertani broth. In this work, we showed that V. cholerae forms vps-dependent biofilms and vps-independent biofilms. The vps-dependent and -independent biofilms differ in their environmental activators and in architecture. Our results suggest that environmental activators of vps-dependent biofilm development are present in freshwater, while environmental activators of vps-independent biofilm development are present in seawater. The distinct environmental requirements for the two modes of biofilm development suggest that vps-dependent biofilm development and vps-independent biofilm development may play distinct roles in the natural environment.  相似文献   

10.
11.
12.
Cyclopropane fatty acids of rugose Vibrio cholerae.   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
Bacterial colony morphology can reflect different physiological stages such as virulence or biofilm formation. In this work we used transposon mutagenesis to identify genes that alter colony morphology and cause differential Congo Red (CR) and Brilliant Blue G (BBG) binding in Shewanella algae, a marine indigenous bacterium and occasional human pathogen. Microscopic analysis of colonies formed by the wild-type strain S. algae CECT 5071 and three transposon integration mutants representing the diversity of colony morphotypes showed production of biofilm extracellular polymeric substances (EPS) and distinctive morphological alterations. Electrophoretic and chemical analyses of extracted EPS showed differential patterns between strains, although the targets of CR and BBG binding remain to be identified. Galactose and galactosamine were the preponderant sugars in the colony biofilm EPS of S. algae. Surface-associated biofilm formation of transposon integration mutants was not directly correlated with a distinct colony morphotype. The hybrid sensor histidine kinase BarA abrogated surface-associated biofilm formation. Ectopic expression of the kinase and mutants in the phosphorelay cascade partially recovered biofilm formation. Altogether, this work provides the basic analysis to subsequently address the complex and intertwined networks regulating colony morphology and biofilm formation in this poorly understood species.  相似文献   

16.
《Phytomedicine》2014,21(3):286-289
Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.  相似文献   

17.
18.
Vibrio cholerae , the causative agent of the devastating diarrheal disease cholera, can form biofilms on diverse biotic and abiotic surfaces. Biofilm formation is important for the survival of this organism both in its natural environment and in the human host. Development of V. cholerae biofilms are regulated by complex regulatory networks that respond to environmental signals. One of these signals, norspermidine, is a polyamine that enhances biofilm formation via the NspS/MbaA signaling system. In this work, we have investigated the role of the polyamine spermidine in regulating biofilm formation in V. cholerae . We show that spermidine import requires PotD1, an ortholog of the periplasmic substrate-binding protein of the spermidine transport system in Escherichia coli . We also show that deletion of the potD1 gene results in a significant increase in biofilm formation. We hypothesize that spermidine imported into the cell hinders biofilm formation. Exogenous spermidine further reduces biofilm formation in a PotD1-independent, but NspS/MbaA-dependent, manner. Our results suggest that polyamines affect biofilm formation in V. cholerae via multiple pathways involving both transport and signaling networks.  相似文献   

19.
A gene cluster containing two genes in tandem has been identified in Vibrio cholerae ElTor N16961. Each has more than one cadherin domain and is homologous to the RTX toxin family and was common in various V. cholerae strains. Insertional mutagenesis demonstrated that each gene has a role in Hep-2 cell rounding, hemolytic activity towards human and sheep RBCs and biofilm formation. The mutants showed reduced adherence to intestinal epithelial cells as well as reduction of in vivo colonization in suckling mice. These two genes thus code for RTX-like toxins in V. cholerae and are associated with the pathogenecity of this organism.  相似文献   

20.
Steps in the development of a Vibrio cholerae El Tor biofilm   总被引:8,自引:0,他引:8  
We report that, in a simple, static culture system, wild-type Vibrio cholerae El Tor forms a three-dimensional biofilm with characteristic water channels and pillars of bacteria. Furthermore, we have isolated and characterized transposon insertion mutants of V. cholerae that are defective in biofilm development. The transposons were localized to genes involved in (i) the biosynthesis and secretion of the mannose-sensitive haemagglutinin type IV pilus (MSHA); (ii) the synthesis of exopolysaccharide; and (iii) flagellar motility. The phenotypes of these three groups suggest that the type IV pilus and flagellum accelerate attachment to the abiotic surface, the flagellum mediates spread along the abiotic surface, and exopolysaccharide is involved in the formation of three-dimensional biofilm architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号