首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patients with dysphagia due to oropharyngeal disease or cerebrovascular accident require long-term nutritional support via enteral feeding, which often results in microbial overgrowth in the upper gastrointestinal (GI) tract. Gastric acid is the primary innate defense mechanism in the stomach and has been assumed to provide an effective barrier to microbial colonization at pH values of <4. To evaluate the efficacy of gastric acid as a barrier to overgrowth, the microbiota of gastric and duodenal aspirates was assessed by culturing methods. Additionally, a fermentor-based model incorporating enteral nutrition tubing of the gastric microbiota of enteral nutrition (EN) patients was constructed to assess the effect of pH on the microbiota. Results showed that gastric acidity had a relatively small effect on the numbers of microorganisms recovered from intestinal aspirates but did influence microbiota composition. Similarly, at pH 3 in the fermentor, a complex microbiota developed in the planktonic phase and in biofilms. The effect of pH on microbiota composition was similar in aspirates and in the fermentors. Candidas and lactobacilli were aciduric, while recoveries of Escherichia coli and Klebsiella pneumoniae decreased as pH was reduced, although both were still present in significant numbers at pH 3. Only Staphylococcus aureus and Bifidobacterium adolescentis persisted at higher pH values both in vitro and in vivo. Lactate and acetate were the main organic acids detected in both aspirates and fermentors. These data show that the simulator used in this investigation was capable of modeling the effects of environmental influences on the upper GI microbiota of EN patients and that gastric pH of <4 is not sufficient to prevent microbial overgrowth in these individuals.  相似文献   

2.
3.
Patients with Parkinson’s disease (PD) often have non-motor symptoms related to gastrointestinal (GI) dysfunction, such as constipation and delayed gastric emptying, which manifest prior to the motor symptoms of PD. Increasing evidence indicates that changes in the composition of the gut microbiota may be related to the pathogenesis of PD. However, it is unclear how GI dysfunction occurs and how gut microbial dysbiosis is caused. We investigated whether a neurotoxin model of PD induced by chronic low doses of MPTP is capable of reproducing the clinical intestinal pathology of PD, as well as whether gut microbial dysbiosis accompanies this pathology. C57BL/6 male mice were administered 18 mg/kg MPTP twice per week for 5 weeks via intraperitoneal injection. GI function was assessed by measuring the 1-h stool frequency and fecal water content; motor function was assessed by pole tests; and tyrosine hydroxylase and alpha-synuclein expression were analyzed. Furthermore, the inflammation, intestinal barrier and composition of the gut microbiota were measured. We found that MPTP caused GI dysfunction and intestinal pathology prior to motor dysfunction. The composition of the gut microbiota was changed; in particular, the change in the abundance of Lachnospiraceae, Erysipelotrichaceae, Prevotellaceae, Clostridiales, Erysipelotrichales and Proteobacteria was significant. These results indicate that a chronic low-dose MPTP model can be used to evaluate the progression of intestinal pathology and gut microbiota dysbiosis in the early stage of PD, which may provide new insights into the pathogenesis of PD.  相似文献   

4.
Patients with dysphagia require long-term nutritional support. This can be delivered by the enteral route via a percutaneous endoscopic gastrostomy (PEG) tube. Enteral nutrition (EN) bypasses the body's innate defences that prevent the microbial colonization of the proximal gut, which predisposes to microbial overgrowth. A continuous culture model simulating the upper gastrointestinal tract microbiota of EN patients was used to investigate the effects of a synbiotic (Lactobacillus acidophilus DUN-311, Bifidobacterium bifidum BB-02, Bifidobacterium lactis BL-01, Synergy 1) on microbial community structure and metabolism. A PEG tube was inserted into the fermenters to study biofilm formation. The synbiotic delivered in sterile semi-skimmed milk (SSSM) was introduced either 48?h prior to or after PEG tube insertion. The synbiotic reduced biofilm formation on PEG tube surfaces, with suppression of Escherichia coli and Klebsiella pneumoniae when it was added subsequent to PEG insertion. When synbiotic feeding was commenced prior to PEG insertion, colonization by Staphylococcus aureus, Candida albicans and Candida famata was also inhibited. Lactate production increased in response the synbiotic or control (SSSM). These results indicate that the use of a synbiotic has the potential to reduce pathogen colonization on PEG tube surfaces in vivo, thereby reducing the incidence of biofilm-related infectious complications.  相似文献   

5.
目的:探讨早期肠内及肠外营养支持对老年胃癌术后的运用,为改善患者的预后提供临床指导。方法:选取我院2008年2月~2014年2月收治的152例老年胃癌患者,分别纳入肠内营养(Enteral nutrition,EN)组(51例)、肠外营养(Parenteral nutrition,PN)组(51例)及EN联合PN组(50例),比较各组患者术后并发症、营养指标、血清指标及住院情况等,分析老年胃癌术后的最佳营养支持方案。结果:EN组胃肠道功能恢复时间为(46.3±5.2)h,PN组为(51.4±7.3)h,EN联合PN组为(41.9±4.4)h,EN联合PN组胃肠道功能恢复时间显著低于其他两组(P0.05);三组患者术后白蛋白、转铁蛋白、前白蛋白及CD8测定值无明显统计学差异(P0.05),EN联合PN组血清C反应蛋白、CD4显著低于其他两组,CD3和CD4/CD8显著高于其他两组(P0.05);EN联合PN组感染性并发症发生率及住院时间均显著低于其他两组(P0.05),其治疗费用介于EN组和PN组之间。结论:肠内联合肠外序贯营养支持较单纯肠内营养或肠外营养支持具有高效、合理、经济、安全等多种优势,能够促进患者消化吸收功能的恢复,改善老年胃癌患者预后和生存质量,值得各级医院推广应用。  相似文献   

6.
The aim of the study was to investigate the effect of microbial immune enteral nutrition by microecopharmaceutics and deep sea fish oil and glutamine and Peptisorb on the patients with acute radiation enteritis in bowel function and immune status. From June 2010 to January 2013, 46 acute radiation enteritis patients in Liaocheng People’s Hospital were randomized into the microbial immune enteral nutrition group and the control group: 24 patients in treatment group and 22 patients in control group. The immune microbial nutrition was given to the study group, but not to the control group. The concentration of serum albumin and prealbumin and the number of CD3 + T cell, CD4 + T cell, CD8 + T cell, CD4 +/CD8 + and natural killer cell of the two groups were detected on the 1, 7 and 14 days after treatment. The arm muscle circumference and triceps skinfold thickness (TSF) were recorded, and the tolerance of the two groups for enteral nutrition and intestinal symptoms was collected and then comparing the two indicators and get results. The tolerance of microbial immune enteral nutrition group about abdominal pain, bloating and diarrhea was better than the control group (P values were 0.018, 0.04 and 0.008 after 7 days; P values were 0.018, 0.015 and 0.002 after 14 days); and the cellular immune parameters were better than the control group( P = 0.008, P = 0.039, P = 0.032); No difference was found in nutrition indicators. To the patients with acute radiation enteritis, microbial immune enteral nutrition could improve the patient’s immune status, and the tolerance of enteral nutrition could be better for the bowel function and the patients’ rehabilitation.  相似文献   

7.
The effect of pH on the activity of proteinases of intestine mucosa, chyme, and enteral microbiota was studied in three piscivorous fish species of the Rybinsk Reservoir differing in their ecological traits: pike Esox lucius, burbot Lota lota, and zander Sander lucioperca. In all fish species, studied pH of ten is optimal for the functioning of proteinases of intestine mucosa; in chyme proteinases, optimal pH values vary from six to ten. Optimal pH for functioning of proteinases of enteral microbiota is seven for zander and pike; pH of nine, for burbot. High activity of chyme and microbiota proteinases within the diapason of pH values of six to nine is a characteristic of burbot. Relative activity of proteinases of intestine mucosa in all fish species is not more than 15% of the maximal activity; that of chyme and enteral microbiota is lower than 40% in zander, close to 50% in burbot, and 80 and 50%, respectively, in pike. It is suggested that diversity of the patterns of pH-dependence of enteral microbiota proteinases relates to the specificity of microbiota in various ecological zones of the reservoir (littoral, sublittoral, and bathyal).  相似文献   

8.
The human gastrointestinal (GI) tract microbiota acts like a virtual organ and is suggested to be of great importance in human energy balance and weight control. This study included 40 monozygotic (MZ) twin pairs to investigate the influence of the human genotype on GI microbiota structure as well as microbial signatures for differences in body mass index (BMI). Phylogenetic microarraying based on 16S rRNA genes demonstrated that MZ twins have more similar microbiotas compared with unrelated subjects (P<0.001), which allowed the identification of 35 genus-like microbial groups that are more conserved between MZ twins. Half of the twin pairs were selected on discordance in terms of BMI, which revealed an inverse correlation between Clostridium cluster IV diversity and BMI. Furthermore, relatives of Eubacterium ventriosum and Roseburia intestinalis were positively correlated to BMI differences, and relatives of Oscillospira guillermondii were negatively correlated to BMI differences. Lower BMI was associated with a more abundant network of primary fiber degraders, while a network of butyrate producers was more prominent in subjects with higher BMI. Combined with higher butyrate and valerate contents in the fecal matter of higher BMI subjects, the difference in microbial networks suggests a shift in fermentation patterns at the end of the colon, which could affect human energy homeostasis.  相似文献   

9.
Proteolytic activities of the intestinal mucosa, chyme, and enteral microbiota have been studied in a wide range of pH values in five fish species from the Cuciurgan reservoir (Moldova). Differences in pH dependence of the intestinal proteinase activity of fish are determined by their feeding type. The maximum activity of proteinases is found in the pumpkinseed Lepomis gibbosus. The minimum activity of proteinases has been demonstrated by the zander Zander lucioperca. The pH optimum of the mucosa and chyme in all fish species (except for the European perch Perca fluviatilis) is 10. The pH optimum of the intestinal microflora varies from 6.0 (in the common carp Cyprinus carpio) to 10 (in the crucian carp Carassius carassius), whereas that in the perch from the Cuciurgan and Rybinsk reservoirs is 7. The majority of fish species, mostly Zander lucioperca and Lepomis gibbosus, are characterized by high proteniase activity of the microbiota, in the pH ranging from 6 to 9. It is assumed that proteinases in the enteral microbiota of fish are able to make up for the relatively low activity of those synthesized by their digestive system in the range of low pH values.  相似文献   

10.
One of the main challenges in understanding the composition of fecal microbiota is that it can consist of microbial mixtures originating from different gastrointestinal (GI) segments. Here, we addressed this challenge for broiler chicken feces using a direct 16S rRNA gene-sequencing approach combined with multivariate statistical analyses. Broiler feces were chosen because of easy sampling and the importance for pathogen transmission to the human food chain. Feces were sampled daily for 16 days from chickens with and without a feed structure-induced stimulation of the gastric barrier function. Overall, we found four dominant microbial phylogroups in the feces. Two of the phylogroups were related to clostridia, one to lactobacilli, and one to Escherichia/Shigella. The relative composition of these phylogroups showed apparent stochastic temporal fluctuations in feces. Analyses of dissected chickens at the end of the experiment, however, showed that the two clostridial phylogroups were correlated to the microbiota in the cecum/colon and the small intestine, while the upper gut (crop and gizzard) microbiota was correlated to the lactobacillus phylogroup. In addition, chickens with a stimulated gizzard also showed less of the proximate GI dominating bacterial group in the feces, supporting the importance of the gastric barrier function. In conclusion, our results suggest that GI origin is a main determinant for the chicken fecal microbiota composition. This knowledge will be important for future understanding of factors affecting shedding of both harmful and beneficial gastrointestinal bacteria through feces.  相似文献   

11.

Background

Enteral nutrition is increasingly advocated in the treatment of acute pancreatitis, but its timing is still controversial. The aim of this meta-analysis was to find out the feasibility of early enteral nutrition within 48 hours of admission and its possible advantages.

Methods and Findings

We searched PubMed, EMBASE Databases, Web of Science, the Cochrane library, and scholar.google.com for all the relevant articles about the effect of enteral nutrition initiated within 48 hours of admission on the clinical outcomes of acute pancreatitis from inception to December 2012. Eleven studies containing 775 patients with acute pancreatitis were analyzed. Results from a pooled analysis of all the studies demonstrated that early enteral nutrition was associated with significant reductions in all the infections as a whole (OR 0.38; 95%CI 0.21–0.68, P<0.05), in catheter-related septic complications (OR 0.26; 95%CI 0.11–0.58, P<0.05), in pancreatic infection (OR 0.49; 95%CI 0.31–0.78, P<0.05), in hyperglycemia (OR 0.24; 95%CI 0.11–0.52, P<0.05), in the length of hospitalization (mean difference −2.18; 95%CI −3.48−(−0.87); P<0.05), and in mortality (OR 0.31; 95%CI 0.14–0.71, P<0.05), but no difference was found in pulmonary complications (P>0.05). The stratified analysis based on the severity of disease revealed that, even in predicted severe or severe acute pancreatitis patients, early enteral nutrition still showed a protective power against all the infection complications as a whole, catheter-related septic complications, pancreatic infection complications, and organ failure that was only reported in the severe attack of the disease (all P<0.05).

Conclusion

Enteral nutrition within 48 hours of admission is feasible and improves the clinical outcomes in acute pancreatitis as well as in predicted severe or severe acute pancreatitis by reducing complications.  相似文献   

12.
Colonization of the gastrointestinal (GI) tract is initiated during birth and continually seeded from the individual’s environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated), while another group (control) was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07), and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively). The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as have a beneficial effect on systemic immune responses as demonstrated with M. hyopneumoniae infection.  相似文献   

13.
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.  相似文献   

14.

Background & Aims

Diseases of the human gastrointestinal (GI) tract are often accompanied by diarrhea with profound alterations in the GI microbiota termed dysbiosis. Whether dysbiosis is due to the disease itself or to the accompanying diarrhea remains elusive. With this study we characterized the net effects of osmotic diarrhea on the composition of the GI microbiota in the absence of disease.

Methods

We induced osmotic diarrhea in four healthy adults by oral administration of polyethylene glycol 4000 (PEG). Stool as well as mucosa specimens were collected before, during and after diarrhea and 16S rDNA-based microbial community profiling was used to assess the microbial community structure.

Results

Stool and mucosal microbiotas were strikingly different, with Firmicutes dominating the mucosa and Bacteroidetes the stools. Osmotic diarrhea decreased phylotype richness and showed a strong tendency to equalize the otherwise individualized microbiotas on the mucosa. Moreover, diarrhea led to significant relative shifts in the phyla Bacteroidetes and Firmicutes and to a relative increase in the abundance of Proteobacteria on the mucosa, a phenomenon also noted in several inflammatory and diarrheal GI diseases.

Conclusions

Changes in microbial community structure induced by osmotic diarrhea are profound and show similarities to changes observed in other GI diseases including IBD. These effects so must be considered when specimens from diarrheal diseases (i.e. obtained by stratification of samples according to diarrheal status) or conditions wherein bowel preparations like PEG (i.e. specimens obtained during endoscopy) are used.  相似文献   

15.
Effect of temperature on proteinases activities of enteral microbiota and of intestinal mucosa was studied in five fish species (roach Rutilus rutilus, crucian carp Carassius carassius, common perch Perca fluviatilis, pike-perch Zander lucioperca, and pike Esox lucius) belonging by the nutrition type to different ecological groups. Essential differences of temperature characteristics of proteinases of intestinal mucosa and of enteral microbiota are revealed in fish belonging to different ecological groups. The character of the t-function of proteinases of intestinal mucosa and enteral microbiota for casein and hemoglobin as a rule is different. The values of the apparent E act proteinases of intestinal mucosa for casein in most cases are higher than those of enteral microbiota, while those for hemoglobin, on the contrary, are lower. The lowest values of relative proteinase activities for casein in the zone of low temperatures (38 and 45.3% of the maximal activity) and the Eact value (less than 2.0 kcal/mol) are found at study of proteinases of enteral microbiota in common perch and crucian carp. The latter indicates a significant adaptability of the enteral microbiota proteinases of common perch and crucian carp to functioning at low temperatures.  相似文献   

16.

Objective

Intestinal proteases carry out a variety of functions in the gastrointestinal (GI) tract. Studies have reported that elevated enteric proteases in patients with GI disease can alter intestinal physiology, however the origin (human vs. microbial) of elevated proteases in patients with GI disease is unclear.

Aim

The aim of this study was to investigate the association between protease activity and the microbiota in human fecal samples.

Design

In order to capture a wide range of fecal protease (FP) activity stool samples were collected from 30 IBS patients and 24 healthy controls. The intestinal microbiota was characterized using 454 high throughput pyro-sequencing of the 16S rRNA gene. The composition and diversity of microbial communities were determined and compared using the Quantitative Insights Into Microbial Ecology (QIIME) pipeline. FP activity levels were determined using an ELISA-based method. FP activity was ranked and top and bottom quartiles (n=13 per quartile) were identified as having high and low FP activity, respectively.

Results

The overall diversity of the intestinal microbiota displayed significant clustering separation (p = 0.001) between samples with high vs. low FP activity. The Lactobacillales, Lachnospiraceae, and Streptococcaceae groups were positively associated with FP activity across the entire study population, whilst the Ruminococcaceae family and an unclassified Coriobacteriales family were negatively associated with FP activity.

Conclusions

These data demonstrate significant associations between specific intestinal bacterial groups and fecal protease activity and provide a basis for further causative studies investigating the role of enteric microbes and GI diseases.  相似文献   

17.
The nutritional status of pregnant women is vital for healthy outcomes and is a concern for a large proportion of the world''s population. The role of the microbiota in pregnancy and nutrition is a promising new area of study with potential health ramifications. In many African countries, maternal and infant death and morbidity are associated with malnutrition. Here, we assess the influence of probiotic yogurt containing Lactobacillus rhamnosus GR-1, supplemented with Moringa plant as a source of micronutrients, on the health and oral, gut, vaginal, and milk microbiotas of 56 pregnant women in Tanzania. In an open-label study design, 26 subjects received yogurt daily, and 30 were untreated during the last two trimesters and for 1 month after birth. Samples were analyzed using 16S rRNA gene sequencing, and dietary recalls were recorded. Women initially categorized as nourished or undernourished consumed similar calories and macronutrients, which may explain why there was no difference in the microbiota at any body site. Consumption of yogurt increased the relative abundance of Bifidobacterium and decreased Enterobacteriaceae in the newborn feces but had no effect on the mother''s microbiota at any body site. The microbiota of the oral cavity and GI tract remained stable over pregnancy, but the vaginal microbiota showed a significant increase in diversity leading up to and after birth. In summary, daily micronutrient-supplemented probiotic yogurt provides a safe, affordable food for pregnant women in rural Tanzania, and the resultant improvement in the gut microbial profile of infants is worthy of further study.  相似文献   

18.

Background

Women living with HIV and co-infected with bacterial vaginosis (BV) are at higher risk for transmitting HIV to a partner or newborn. It is poorly understood which bacterial communities constitute BV or the normal vaginal microbiota among this population and how the microbiota associated with BV responds to antibiotic treatment.

Methods and Findings

The vaginal microbiota of 132 HIV positive Tanzanian women, including 39 who received metronidazole treatment for BV, were profiled using Illumina to sequence the V6 region of the 16S rRNA gene. Of note, Gardnerella vaginalis and Lactobacillus iners were detected in each sample constituting core members of the vaginal microbiota. Eight major clusters were detected with relatively uniform microbiota compositions. Two clusters dominated by L. iners or L. crispatus were strongly associated with a normal microbiota. The L. crispatus dominated microbiota were associated with low pH, but when L. crispatus was not present, a large fraction of L. iners was required to predict a low pH. Four clusters were strongly associated with BV, and were dominated by Prevotella bivia, Lachnospiraceae, or a mixture of different species. Metronidazole treatment reduced the microbial diversity and perturbed the BV-associated microbiota, but rarely resulted in the establishment of a lactobacilli-dominated microbiota.

Conclusions

Illumina based microbial profiling enabled high though-put analyses of microbial samples at a high phylogenetic resolution. The vaginal microbiota among women living with HIV in Sub-Saharan Africa constitutes several profiles associated with a normal microbiota or BV. Recurrence of BV frequently constitutes a different BV-associated profile than before antibiotic treatment.  相似文献   

19.
Glycans on mucosal surfaces have an important role in host–microbe interactions. The locus encoding the blood-group-related glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) is subject to strong selective forces in natural house-mouse populations that contain a common allelic variant that confers loss of B4galnt2 gene expression in the gastrointestinal (GI) tract. We reasoned that altered glycan-dependent intestinal host–microbe interactions may underlie these signatures of selection. To determine whether B4galnt2 influences the intestinal microbial ecology, we profiled the microbiota of wild-type and B4galnt2-deficient siblings throughout the GI tract using 16S rRNA gene pyrosequencing. This revealed both distinct communities at different anatomic sites and significant changes in composition with respect to genotype, indicating a previously unappreciated role of B4galnt2 in host–microbial homeostasis. Among the numerous B4galnt2-dependent differences identified in the abundance of specific bacterial taxa, we unexpectedly detected a difference in the pathogenic genus, Helicobacter, suggesting Helicobacter spp. also interact with B4galnt2 glycans. In contrast to other glycosyltransferases, we found that the host intestinal B4galnt2 expression is not dependent on presence of the microbiota. Given the long-term maintenance of alleles influencing B4galnt2 expression by natural selection and the GI phenotypes presented here, we suggest that variation in B4galnt2 GI expression may alter susceptibility to GI diseases such as infectious gastroenteritis.  相似文献   

20.
High-altitude (HA) visitors like pilgrims, trackers, scientists and military personnel face a group of nonspecific gastrointestinal (GI) symptoms during acclimatization to hypobaric hypoxia. In order to investigate the alteration of indigenous gastrointestinal microbiota in the development of such GI symptoms, an experiment was conducted for the enumeration of dominant cultivable faecal microbiota of 15 soldiers at base level (Delhi) and during their 15-day acclimatization at 3,505 m HA (Leh). At HA, faecal microbiota analysis revealed that total aerobes decreased significantly with increase of total and facultative anaerobes. The strict anaerobes like Bifidobacterium sp., Bacteroidetes sp. and Lactobacillus sp. exhibited positive growth direction index (GDI) like other predominant obligate anaerobes Clostridium perfringens and Peptostreptococcus sp. Different enzymes like amylase, proteinase and polyphenol hydrolase produced by different bacterial populations showed positive GDI, whereas phosphatase producers exhibited negative GDI. The levels of microbe-originated enzymes like amylase, proteinase, alkaline phosphatase and β-glucuronidase were also elevated during HA acclimatization. In addition, in vitro gas production ability was enhanced with increase of faecal immunoglobulins IgA and IgG. We demonstrated that hypoxic environment at HA had the potential to alter the gut microbial composition and its activities that may cause GI dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号