首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterized the cysteine peptidase production by Phytomonas serpens, a tomato trypanosomatid. The parasites were cultivated in four distinct media, since growth conditions could modulate the synthesis of bioactive molecules. The proteolytic profile has not changed qualitatively regardless the media, showing two peptidases of 38 and 40 kDa; however, few quantitative changes were observed including a drastic reduction (around 70%) on the 40 and 38 kDa peptidase activities when parasites were grown in yeast extract and liver infusion trypticase medium, respectively, in comparison with parasites cultured in Warren medium. The time-span of growth did not significantly alter the protein and peptidase expression. The proteolytic activities were blocked by classical cysteine peptidase inhibitors (E-64, leupeptin, and cystatin), being more active at pH 5.0 and showing complete dependence to reducing agents (dithiothreitol and l-cysteine) for full activity. The cysteine peptidases were able to hydrolyze several proteinaceous substrates, including salivary gland proteins from Oncopeltus fasciatus, suggesting broad substrate utilization. By means of agglutination, fluorescence microscopy, flow cytometry and Western blotting analyses we showed that both cysteine peptidases produced by P. serpens share common epitopes with cruzipain, the major cysteine peptidase of Trypanosoma cruzi. Moreover, our data suggest that the 40 kDa cysteine peptidase was located at the P. serpens cell surface, attached to membrane domains via a glycosylphosphatidylinositol anchor. The 40 kDa peptidase was also detected in the cell-free culture supernatant, in an active form, which suggests secretion of this peptidase to the extracellular environment.  相似文献   

2.
Two genes coding for cysteine peptidase inhibitors of the cystatin family (Om-cystatin 1 and 2) were isolated from a gut-specific cDNA library of the soft tick Ornithodoros moubata. Both cystatins were clearly down-regulated after a blood meal. Om-cystatin 1 is mainly expressed in the tick gut, while Om-cystatin 2 mRNA was also found in other tick tissues. Authentic Om-cystatin 2 was significantly more abundant than Om-cystatin 1 in the gut contents of fasting ticks and was associated with hemosome-derived residual bodies accumulated in the gut lumen. Om-cystatin 2 was also expressed by type 2 secretory cells in the salivary glands of unfed ticks. The inhibitory specificity of recombinant Om-cystatins 1 and 2 was tested with mammalian cysteine peptidases, as well as endogenous cysteine peptidases present in the tick gut. Both cystatins efficiently inhibited papain-like peptidases, including cathepsin B and H, but differed significantly in their affinity towards cathepsin C and failed to block asparaginyl endopeptidase. Our results suggest that the secreted cystatin isoinhibitors are involved in the regulation of multiple proteolytic targets in the tick digestive system and tick-host interaction.  相似文献   

3.
Candida albicans expresses a vast number of hydrolytic enzymes, playing roles in several phases of yeast-host interactions. Here, we identified two novel extracellular peptidase classes in C. albicans. Using gelatin-sodium dodecyl sulfate polyacrylamide gel electrophoresis two gelatinolytic activities were detected at physiological pH: a 60-kDa metallopeptidase, completely blocked by 1,10-phenanthroline, and a 50-kDa serine peptidase inhibited by phenylmethylsulfonyl fluoride. In an effort to establish a probable functional implication for these novel peptidase classes, we demonstrated that the 50-kDa secretory serine peptidase was active over a broad pH range (5.0-7.2) and was capable to hydrolyze some soluble human serum proteins and extracellular matrix components. Conversely, when this isolate was grown in yeast carbon base supplemented with bovine serum albumin, a secretory aspartyl peptidase activity was measured, instead of metallo- and serine peptidases, suggesting that distinct medium composition induces different expression of released peptidases in C. albicans. Additionally, we showed by quantitative proteolytic measurement, flow cytometry and immunoblotting assays that the brain heart infusion medium might repress the Sap1-3 production. Collectively, our results showed for the first time the capability of an extracellular proteolytic enzyme other than aspartic-type peptidases to cleave a broad spectrum of relevant host proteinaceous substrates by the human pathogen C. albicans.  相似文献   

4.
The spectra of Tribolium castaneum and T. confusum larval digestive peptidases were characterized with respect to the spatial organization of protein digestion in the midgut. The pH of midgut contents in both species increased from 5.6–6.0 in the anterior to 7.0–7.5 in the posterior midgut. However, the pH optimum of the total proteolytic activity of the gut extract from either insect was pH 4.1. Approximately 80% of the total proteolytic activity was in the anterior and 20% in the posterior midgut of either insect when evaluated in buffers simulating the pH and reducing conditions characteristic for each midgut section. The general peptidase activity of gut extracts from either insect in pH 5.6 buffer was mostly due to cysteine peptidases. In the weakly alkaline conditions of the posterior midgut, the serine peptidase contribution was 31 and 41% in T. castaneum and T. confusum, respectively. A postelectrophoretic peptidase activity assay with gelatin also revealed the important contribution of cysteine peptidases in protein digestion in both Tribolium species. The use of a postelectrophoretic activity assay with p‐nitroanilide substrates and specific inhibitors revealed a set of cysteine and serine endopeptidases, 8 and 10 for T. castaneum, and 7 and 9 for T. confusum, respectively. Serine peptidases included trypsin‐, chymotrypsin‐, and elastase‐like enzymes, the latter being for the first time reported in Tenebrionid insects. These data support a complex system of protein digestion in the Tribolium midgut with the fundamental role of cysteine peptidases. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Amin A  Nöbauer K  Patzl M  Berger E  Hess M  Bilic I 《PloS one》2012,7(5):e37417
Trichomonas gallinae, the aetiological agent of avian trichomonosis, was shown to secrete soluble factors involved in cytopathogenic effect on a permanent chicken liver (LMH) cell culture. The present study focused on the characterization of these molecules. The addition of specific peptidase inhibitors to the cell-free filtrate partially inhibited the monolayer destruction, which implied the presence of peptidases in the filtrate and their involvement in the cytopathogenic effect. One-dimensional substrate (gelatin) SDS-PAGE confirmed the proteolytic character of the filtrate by demonstrating the proteolytic activity within the molecular weight range from 38 to 110 kDa. In addition, the proteolytic activity was specifically inhibited by addition of TLCK and E-64 cysteine peptidase inhibitors implying their cysteine peptidase nature. Furthermore, variations in the intensity and the number of proteolytic bands were observed between cell-free filtrates of low and high passages of the same T. gallinae clonal culture. Two-dimensional substrate gel electrophoresis of concentrated T. gallinae cell-free filtrate identified at least six proteolytic spots. The mass spectrometric analysis of spots from 2-D gels identified the presence of at least two different Clan CA, family C1, cathepsin L-like cysteine peptidases in the cell-free filtrate of T. gallinae. In parallel, a PCR approach using degenerated primers based on the conserved amino acid sequence region of cysteine peptidases from Trichomonas vaginalis identified the coding sequences for four different Clan CA, family C1, cathepsin L-like cysteine peptidases. Finally, this is the first report analyzing molecules secreted by T. gallinae and demonstrating the ubiquity of peptidases secreted by this protozoon.  相似文献   

6.
The serine peptidases of Trypanosoma brucei have been viewed as potential drug targets. In particular, the S9 prolyl oligopeptidase subfamily is thought to be a good avenue for drug discovery. This is based on the finding that some S9 peptidases are secreted and active in the mammalian bloodstream, and that they are a class of enzyme against which drugs have successfully been developed. We collated a list of all serine peptidases in T. brucei, identifying 20 serine peptidase genes, of which nine are S9 peptidases. We screened all 20 serine peptidases by RNAi to determine which, if any, are essential for bloodstream form T. brucei survival. All S9 serine peptidases were dispensable for parasite survival in vitro, even when pairs of similar genes, coding for oligopeptidase B or prolyl oligopeptidase, were targeted simultaneously. We also found no effect on parasite survival in an animal host when the S9 peptidases oligopeptidase B, prolyl oligopeptidase or dipeptidyl peptidase 8 were targeted. The only serine peptidase to emerge from the RNAi screen as essential was a putative type-I signal peptide peptidase (SPP1). This gene was essential for parasite survival both in vitro and in vivo. The growth defect conferred by RNAi depletion of SPP1 was rescued by expression of a functional peptidase from an RNAi resistant SPP1 gene. However, expression of catalytically inactive SPP1 was unable to rescue cells from the SPP1 depleted phenotype, demonstrating that SPP1 serine peptidase activity is necessary for T. brucei survival.  相似文献   

7.
James MN 《Biological chemistry》2006,387(8):1023-1029
Fungi and viruses encode a variety of peptidases having a plethora of functions. Many fungal peptidases are extracellular and are likely used to degrade proteins in their environment. Viral peptidases are processing enzymes, intimately involved in the virus infectious cycle. The viral RNA genome is translated by the host-cell machinery into a large polyprotein that is cleaved by the viral peptidases into mature capsid proteins, non-structural proteins and enzymes. I review the structure and catalytic mechanism of scytalidoglutamic peptidase isolated from the wood-destroying fungus Scytalidium lignicolum. This enzyme has a unique beta-sandwich fold and a novel catalytic mechanism based on a glutamate, a glutamine and a nucleophilic water molecule. Hepatitis A virus (HAV) 3C peptidase was the first structure identified for a viral 3C enzyme that exhibited the three-dimensional fold of the chymotrypsin family of serine peptidases but had a cysteine sulfur atom instead of the serine oxygen as the nucleophile. The structure of HAV 3C was unusual in that the Asp residue expected as the third member of the catalytic triad did not interact with the general base His. The present structure is of a beta-lactone-inhibited version of HAV 3C that has a restored catalytic triad.  相似文献   

8.
XCP1 is a xylem-specific papain-like cysteine peptidase in Arabidopsis. To determine whether XCP1 could be involved in tracheary element autolysis, promoter activity and localization of XCP1 were investigated using XCP1 promoter-beta-glucuronidase fusions and immunofluorescence confocal microscopy. A tracheary element expression pattern was detected for XCP1. Results from confocal microscopy and biochemical subcellular fractionation indicated that XCP1 was localized in the vacuole. Ectopic expression of XCP1 resulted in a reduction in plant size in some lines and early leaf senescence, as indicated by early loss of leaf chlorophyll. Reduced plant size was correlated with higher levels of XCP1, as shown by immunoblot and peptidase activity gel analyses. The XCP1 prodomain exhibits exceptionally high similarity (greater than 80%) to the prodomains of papain and other papain-like enzymes isolated from papaya (Carica papaya) laticifers when compared with all other reported papain-like enzymes. The potential for XCP1 and papain to perform common functions as catalysts of autolytic processing following cell death due to programmed suicide or to wounding is discussed.  相似文献   

9.
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1-MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor.  相似文献   

10.
Peptidases in the extracellular space might affect the integrity of recombinant proteins expressed in, and secreted from, plant cells. To identify extracellular peptidases, we recovered the leaf intercellular fluid from Nicotiana tabacum plants by an infiltration-centrifugation method. The activity of various peptidases was detected by an in vitro assay in the presence of specific inhibitors, using BSA and human serum gamma-globulin as substrates. Peptidases were detected by 1- and 2-D zymography in a polyacrylamide gel containing gelatin as substrate. Proteolytic activity was observed over a wide range of molecular masses equal to, or higher than, 45 kDa. To identify the peptidases, the extracellular proteins were digested with trypsin and analyzed by LC and MS. Seventeen peptides showing identity or similarity to predicted plant aspartic, cysteine, and serine peptidases have been identified. The extracellular localization of a cysteine peptidase aleurain homolog was also shown.  相似文献   

11.
A cDNA coding for phytocystatin, a protease inhibitor, was isolated from wheat embryos by differential display RT-PCR and the corresponding full-length cDNA (named WC5 for wheat cystatin gene 5) subsequently obtained by RACE. The deduced primary sequence of the protein suggests the presence of a 28 amino acid N-terminal signal sequence and a 100 amino acid mature protein containing the three consensus motifs known to interact with the active site of cysteine peptidases. Northern and western analysis revealed a spatio-temporal pattern of the cystatin gene expression during caryopse development. In the embryo, WC5 was only expressed during early embryogenesis whereas, in seed covering layers, WC5 expression was restricted to the maturation stage of grain development. In addition, immunolocalization experiments showed that cystatin accumulated in the aleurone layer of the maturating seed and in the parenchymal tissues of the embryo scutellum. A recombinant form of the wheat cystatin was shown to be able to inhibit peptidase activities present in whole seed protein extracts. In addition, immunological techniques allowed us to identify two putative target peptidases. The possible roles of the cystatin protein are discussed in relation with tissular localization and putative peptidase targets during seed maturation.  相似文献   

12.
Cysteine peptidase inhibitor genes (ICP) of the chagasin family have been identified in protozoan (Leishmania mexicana and Trypanosoma brucei) and bacterial (Pseudomonas aeruginosa) pathogens. The encoded proteins have low sequence identities with each other and no significant identity with cystatins or other known cysteine peptidase inhibitors. Recombinant forms of each ICP inhibit protozoan and mammalian clan CA, family C1 cysteine peptidases but do not inhibit the clan CD cysteine peptidase caspase 3, the serine peptidase trypsin or the aspartic peptidases pepsin and thrombin. The functional homology between ICPs implies a common evolutionary origin for these bacterial and protozoal proteins.  相似文献   

13.
The cDNA of a cystein peptidase inhibitor was isolated from sugarcane and expressed in Escherichia coli. The protein, named canecystatin, has previously been shown to exert antifungal activity on the filamentous fungus Trichoderma reesei. Herein, the inhibitory specificity of canecystatin was further characterized. It inhibits the cysteine peptidases from plant source papain (Ki =3.3nM) and baupain (Ki=2.1x10(-8)M), but no inhibitory effect was observed on ficin or bromelain. Canecystatin also inhibits lysosomal cysteine peptidases such as human cathepsin B (Ki=125nM), cathepsin K (Ki=0.76nM), cathepsin L (Ki=0.6nM), and cathepsin V (Ki=1.0nM), but not the aspartyl peptidase cathepsin D. The activity of serine peptidases such as trypsin, chymotrypsin, pancreatic, and neutrophil elastases, and human plasma kallikrein is not affected by the inhibitor, nor is the activity of the metallopeptidases angiotensin converting enzyme and neutral endopeptidase. This is the first report of inhibitory activity of a sugarcane cystatin on cysteine peptidases.  相似文献   

14.
We compared the peptidase activities of the excretory/secretory (E/S) antigens of oncospheres of Taenia solium and related, but nonpathogenic, Taenia saginata. Taenia solium and T. saginata oncospheres were cultured, and the spent media of 24-, 48-, 72-, and 96-hr fractions were analyzed. Activities for serine peptidases (chymotrypsin-, trypsin-, and elastase-like), cysteine peptidases (cathepsin B-, cathepsin L-, and calpaine-like), and aminopeptidase (B-like peptidases) were tested fluorometrically with peptides coupled to 7-amino-4-methylcoumarin. In both species, the E/S antigens showed cysteine, serine, and aminopeptidase activities. Although no particular peptidase had high activity in T. solium, and was absent in T. saginata, or vice versa, different patterns of activity were found. A chymotrypsin-like peptidase showed the highest activity in both parasites, and it had 10 times higher activity in T. solium than in T. saginata. Trypsin-like and cathepsin B-like activities were significantly higher in T. solium. Minimal levels of cathepsin B were present in both species, and higher levels of elastase-like and cathepsin L-like activity were observed in T. saginata. Taenia solium and T. saginata have different levels and temporal activities of proteolytic enzymes that could play a modulator role in the host specificity for larval invasion through penetration of the intestinal mucosa.  相似文献   

15.
Coccidioides immitis is the causative agent of coccidioidomycosis, a systemic mycosis that attacks humans and a wide variety of animals. In the present study, we showed that the C. immitis mycelial form is able to release proteolytic enzyme into the extracellular environment. Under chemically defined growth conditions, mycelia secreted seven distinct polypeptides ranging from 15 to 65 kDa and an extracellular peptidase of 25 kDa. This enzyme had its activity fully inhibited by phenylmethylsulphonyl fluoride, a serine peptidase inhibitor. Conversely, metallo, cysteine, and aspartyl peptidase inhibitors did not alter the 25-kDa enzyme behavior. This extracellular serine peptidase was able to degrade keratin, a fibrous protein that composes human epidermis. Additionally, this peptidase cleaved different protein substrates, including gelatin, casein, hemoglobin, and albumin. Curiously, an 18-kDa serine peptidase activity was evidenced solely when casein was used as the co-polymerized protein substrate into the gel. The existence of different secreted peptidases could be advantageous for the adaptation of C. immitis to distinct environments during its complex life cycle.  相似文献   

16.
Evolutionary lines of cysteine peptidases   总被引:2,自引:0,他引:2  
The proteolytic enzymes that depend upon a cysteine residue for activity have come from at least seven different evolutionary origins, each of which has produced a group of cysteine peptidases with distinctive structures and properties. We show here that the characteristic molecular topologies of the peptidases in each evolutionary line can be seen not only in their three-dimensional structures, but commonly also in the two-dimensional structures. Clan CA contains the families of papain (C1), calpain (C2), streptopain (C10) and the ubiquitin-specific peptidases (C12, C19), as well as many families of viral cysteine endopeptidases. Clan CD contains the families of clostripain (C11), gingipain R (C25), legumain (C13), caspase-1 (C14) and separin (C50). These enzymes have specificities dominated by the interactions of the S1 subsite. Clan CE contains the families of adenain (C5) from adenoviruses, the eukaryotic Ulp1 protease (C48) and the bacterial YopJ proteases (C55). Clan CF contains only pyroglutamyl peptidase I (C15). The picornains (C3) in clan PA have probably evolved from serine peptidases, which still form the majority of enzymes in the clan. The cysteine peptidase activities in clans PB and CH are autolytic only. In conclusion, we suggest that although almost all the cysteine peptidases depend for activity on catalytic dyads of cysteine and histidine, it is worth noting some important differences that they have inherited from their distant ancestral peptidases.  相似文献   

17.
Genes encoding novel murine cysteine peptidases of the papain family C1A and related genes were cloned and mapped to mouse chromosome 13, colocalizing with the previously assigned cathepsin J gene. We constructed a <460-kb phage artificial chromosome (PAC) contig and characterized a dense cluster comprising eight C1A cysteine peptidase genes, cathepsins J, M, Q, R, -1, -2, -3, and -6; three pseudogenes of cathepsins M, -1, and -2; and four genes encoding putative cysteine peptidase inhibitors related to the proregion of C1A peptidases (trophoblast-specific proteins alpha and beta and cytotoxic T-lymphocyte-associated proteins 2alpha and -beta). Because of sequence homologies of 61.9-72.0% between cathepsin J and the other seven putative cysteine peptidases of the cluster, these peptidases are classified as "cathepsin J-like". The absence of cathepsin J-like peptidases and related genes from the human genome suggests that the cathepsin J cluster arose by partial and complete gene duplication events after the divergence of primate and rodent lineages. The expression of cathepsin J-like peptidases and related genes in the cluster is restricted to the placenta only. Clustered genes are induced at specific time points, and their expression increases toward the end of gestation. The specific expression pattern and high expression level suggest an essential role of cathepsin J-like peptidases and related genes in formation and development of the murine placenta.  相似文献   

18.
Abstract A genomic library of Lactobacillus delbrueckii ssp. lactis DSM7290 in the low copy number vector pLG339, was screened for the presence of peptidase genes. Using the chromogenic substrate gly-ala-β-naphthylamide, which is not a substrate for any of the recently cloned peptidases of DSM7290, and the multiple peptidase deficient Escherichia coli strain CM89, allowed the isolation of clones, which contained the equivalent hydrolytic activity. To identify genes encoding the conserved catalytic active site of cysteine proteases, partial nucleotide sequencing with a degenerate oligonucleotide was performed on recombinant plasmids isolated from such clones. This allowed to identify two out of nine clones to carry the Lactobacillus pepC gene. A total of 2026 nucleotides were determined, and sequence analysis revealed a gene with strong homology to the recently cloned Lb. helveticus (73.2%) and Lactococcus lactis (51.03%) pepC genes, and the derived protein showed homology with the active site of a large number of cysteine proteases. The predicted open reading frame consists of 449 codons, coding for a protein of 50 909 Da. The enzyme is functional and extremely overexpressed in E. coli .  相似文献   

19.
We investigated the possible secretion of peptidases by F. pedrosoi, when conidial cells were cultured in two distinct media. Aspartyl proteolytic activity was detected on the Czapeck-Dox-derived supernatant, which was blocked by pepstatin, and only active in extremely acidic conditions. The supernatant obtained after conidia growth in Kauffman medium presented metallopeptidase activity, which was active over a broad pH range and sensitive to 1,10-phenanthroline and EGTA. Additionally, both culture supernatants were able to cleave a wide range of proteinaceous substrates, including important human serum proteins (e.g. albumin and immunoglobulin G) and extracellular matrix components (e.g. fibronectin and laminin). As peptidases participate in different cellular metabolic pathways, we also tested the influence of proteolytic inhibitors on the F. pedrosoi conidia development in vitro. The metallopeptidase inhibitors, 1,10-phenanthroline, EGTA and EDTA, strongly abrogated the growth of conidial forms by approximately 95%, 85% and 60%, respectively. Moreover, 1,10-phenanthroline blocked the differentiation process from conidia to mycelia, an essential step during the F. pedrosoi life cycle. Phenylmethanesulfonyl fluoride, a serine peptidase inhibitor, slightly reduced the conidial growth, whereas proteolytic inhibitors of cysteine (E-64) and aspartic (pepstatin) type peptidases did not alter conidial developmental behavior. In summary, our results showed for the first time the expression of extracellular proteolytic activity by F. pedrosoi conidial cells.  相似文献   

20.
Proteolytic enzymes play a central role in the physiology of all living organisms, participating in several metabolic pathways and in different phases of parasite-host interactions. We have identified cell-associated peptidase activities in 33 distinct flagellates, including representatives of almost all known trypanosomatid genera parasitizing insects (Herpetomonas, Crithidia, Leishmania, Trypanosoma, Leptomonas, Phytomonas, Blastocrithidia and Endotrypanum) as well as the biflagellate kinetoplastid Bodo, by using SDS-PAGE containing gelatin as co-polymerized substrate and proteolytic inhibitors. Under the alkaline pH (9.0) conditions employed, all the flagellates presented at least one peptidase, with the exception of Crithidia acanthocephali and Phytomonas serpens, which did not display any detectable proteolytic enzyme activity. All the proteolytic activities were completely inhibited by 1,10-phenanthroline, a zinc-chelating agent, putatively identifying these activities as metallo-type peptidases. EDTA and EGTA, two other metallopeptidase inhibitors, E-64 (a cysteine peptidase inhibitor), pepstatin A (an aspartyl peptidase inhibitor) and PMSF (a serine peptidase inhibitor) did not interfere with the metallopeptidase activities detected in the studied trypanosomatids. Conversely, Bodo-derived peptidases were resistant to 1,10-phenanthroline and only partially inhibited by EDTA, showing a distinct inhibition profile. Together, our data demonstrated great heterogeneity of expression of metallopeptidases in a wide range of parasites belonging to the family Trypanosomatidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号