首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glut4 storage vesicles (GSVs) represent translocation-competent vesicular carriers in fat and skeletal muscle cells that deliver Glut4 to the plasma membrane in response to insulin stimulation. GSVs include three major cargo proteins: Glut4, insulin-responsive aminopeptidase (IRAP), and sortilin. Previous work has suggested that the lumenal interaction between Glut4 and sortilin and the cytoplasmic interaction between sortilin and GGA adaptors play an important role in recruitment of Glut4 into the GSVs. However, the mechanism of IRAP targeting to this compartment remains unknown. To address this question, we show that in differentiating adipocytes IRAP enters the GSVs from the "donor" membranes on day 3 of differentiation. Forced expression of sortilin in undifferentiated cells does not recruit IRAP into the vesicles. However, double expression of sortilin and Glut4 reconstitutes functional GSVs that incorporate endogenous IRAP. To explain this process, we show by a yeast two-hybrid system and chemical cross-linking that the lumenal domain of IRAP can interact with the lumenal loop of Glut4. IRAP without the lumenal domain is faithfully targeted to the donor membranes but has significantly lower insulin responsiveness than full-length IRAP. We suggest that lumenal interactions between Glut4 and IRAP play an important role in the assembly of the GSVs.  相似文献   

2.
Syntaxin 6 regulates Glut4 trafficking in 3T3-L1 adipocytes   总被引:2,自引:0,他引:2       下载免费PDF全文
Insulin stimulates the movement of glucose transporter-4 (Glut4)-containing vesicles to the plasma membrane of adipose cells. We investigated the role of post-Golgi t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the trafficking of Glut4 in 3T3-L1 adipocytes. Greater than 85% of syntaxin 6 was found in Glut4-containing vesicles, and this t-SNARE exhibited insulin-stimulated movement to the plasma membrane. In contrast, the colocalization of Glut4 with syntaxin 7, 8, or 12/13 was limited and these molecules did not translocate to the plasma membrane. We used adenovirus to overexpress the cytosolic domain of these syntaxin's and studied their effects on Glut4 traffic. Overexpression of the cytosolic domain of syntaxin 6 did not affect insulin-stimulated glucose transport, but increased basal deGlc transport and cell surface Glut4 levels. Moreover, the syntaxin 6 cytosolic domain significantly reduced the rate of Glut4 reinternalization after insulin withdrawal and perturbed subendosomal Glut4 sorting; the corresponding domains of syntaxins 8 and 12 were without effect. Our data suggest that syntaxin 6 is involved in a membrane-trafficking step that sequesters Glut4 away from traffic destined for the plasma membrane. We speculate that this is at the level of traffic of Glut4 into its unique storage compartment and that syntaxin 16 may be involved.  相似文献   

3.
Insulin regulates glucose transport in muscle and adipose tissue by triggering the translocation of a facilitative glucose transporter, GLUT4, from an intracellular compartment to the cell surface. It has previously been suggested that GLUT4 is segregated between endosomes, the trans-Golgi network (TGN), and a postendosomal storage compartment. The aim of the present study was to isolate the GLUT4 storage compartment in order to determine the relationship of this compartment to other organelles, its components, and its presence in different cell types. A crude intracellular membrane fraction was prepared from 3T3-L1 adipocytes and subjected to iodixanol equilibrium sedimentation analysis. Two distinct GLUT4-containing vesicle peaks were resolved by this procedure. The lighter of the two peaks (peak 2) was comprised of two overlapping peaks: peak 2b contained recycling endosomal markers such as the transferrin receptor (TfR), cellubrevin, and Rab4, and peak 2a was enriched in TGN markers (syntaxin 6, the cation-dependent mannose 6-phosphate receptor, sortilin, and sialyltransferase). Peak 1 contained a significant proportion of GLUT4 with a smaller but significant amount of cellubrevin and relatively little TfR. In agreement with these data, internalized transferrin (Tf) accumulated in peak 2 but not peak 1. There was a quantitatively greater loss of GLUT4 from peak 1 than from peak 2 in response to insulin stimulation. These data, combined with the observation that GLUT4 became more sensitive to ablation with Tf-horseradish peroxidase following insulin treatment, suggest that the vesicles enriched in peak 1 are highly insulin responsive. Iodixanol gradient analysis of membranes isolated from other cell types indicated that a substantial proportion of GLUT4 was targeted to peak 1 in skeletal muscle, whereas in CHO cells most of the GLUT4 was targeted to peak 2. These results indicate that in insulin-sensitive cells GLUT4 is targeted to a subpopulation of vesicles that appear, based on their protein composition, to be a derivative of the endosome. We suggest that the biogenesis of this compartment may mediate withdrawal of GLUT4 from the recycling system and provide the basis for the marked insulin responsiveness of GLUT4 that is unique to muscle and adipocytes.  相似文献   

4.
Insulin stimulates glucose transport in adipocytes and muscle by inducing the redistribution of Glut4 from intracellular locations to the plasma membrane. The fusion of Glut4-containing vesicles at the plasma membrane is known to involve the target SNAREs syntaxin 4 and SNAP-23 and the vesicle SNARE VAMP2. Little is known about the initial docking of Glut4 vesicles with the plasma membrane. A recent report has implicated Exo70, a component of the mammalian exocyst complex, in the initial interaction of Glut4 vesicles with the adipocyte plasma membrane. Here, we have examined the role of two other exocyst components, rsec6 and rsec8. We show that insulin promotes a redistribution of rsec6 and rsec8 to the plasma membrane and to cytoskeletal fractions within 3T3-L1 adipocytes but does not modulate levels of these proteins co-localized with Glut4. We further show that adenoviral-mediated overexpression of either rsec6 or rsec8 increases the magnitude of insulin-stimulated glucose transport in 3T3-L1 adipocytes. By contrast, overexpression of rsec6 or rsec8 did not increase the extent of the secretion of adipsin or ACRP30 from adipocytes and had no discernible effect on transferrin receptor traffic. Collectively, our data support a role for the exocyst in insulin-stimulated glucose transport and suggest a model by which insulin-dependent relocation of the exocyst to the plasma membrane may contribute to the specificity of Glut4 vesicle docking and fusion with the adipocyte plasma membrane.  相似文献   

5.
Ng Y  Ramm G  Lopez JA  James DE 《Cell metabolism》2008,7(4):348-356
The serine/threonine kinase Akt2 has been implicated in insulin-regulated glucose uptake into muscle and fat cells by promoting the translocation of glucose transporter 4 (GLUT4) to the cell surface. However, it remains unclear whether activation of Akt2 is sufficient since a role for alternate signaling pathways has been proposed. Here we have engineered 3T3-L1 adipocytes to express a rapidly inducible Akt2 system based on drug-inducible heterodimerization. Addition of the dimerizer rapalog resulted in activation of Akt2 within 5 min, concomitant with phosphorylation of the Akt substrates AS160 and GSK3. Comparison with insulin stimulation revealed that the level of Akt2 activity observed with rapalog was within the physiological range, reducing the likelihood of off-target effects. Transient activation of Akt2 also increased glucose transport and GLUT4 translocation to the plasma membrane. These results show that activation of Akt2 is sufficient to stimulate GLUT4 translocation in 3T3-L1 adipocytes to an extent similar to insulin.  相似文献   

6.
Insulin stimulates the movement of the facilitative glucose transporter glucose transporter-4 (Glut4) from an intracellular compartment to the plasma membrane in adipocytes and muscle cells, resulting in an increased rate of glucose uptake. Insulin-stimulated Glut4 translocation and glucose transport are abolished by wortmannin, a specific inhibitor of phosphatidylinositol 3'-kinase (PI3K). Here, we demonstrate that neomycin, a drug that masks the cellular substrate of PI3K, phosphatidylinositol 4,5-bisphosphate (PIP), prevents wortmannin inhibition of insulin-stimulated (2)Glut4 translocation and glucose transport without activating protein kinase B, a downstream effector of PI3K. These results suggest that PIP(2) may have an important regulatory function in insulin-stimulated Glut4 translocation and glucose transport.  相似文献   

7.
Insulin stimulates glucose uptake in fat and muscle by redistributing GLUT4 glucose transporters from intracellular membranes to the cell surface. We previously proposed that, in 3T3-L1 adipocytes, TUG retains GLUT4 within unstimulated cells and insulin mobilizes this retained GLUT4 by stimulating its dissociation from TUG. Yet the relative importance of this action in the overall control of glucose uptake remains uncertain. Here we report that transient, small interfering RNA-mediated depletion of TUG causes GLUT4 translocation and enhances glucose uptake in unstimulated 3T3-L1 adipocytes, similar to insulin. Stable TUG depletion or expression of a dominant negative fragment likewise stimulates GLUT4 redistribution and glucose uptake, and insulin causes a 2-fold further increase. Microscopy shows that TUG governs the accumulation of GLUT4 in perinuclear membranes distinct from endosomes and indicates that it is this pool of GLUT4 that is mobilized by TUG disruption. Interestingly, in addition to translocating GLUT4 and enhancing glucose uptake, TUG disruption appears to accelerate the degradation of GLUT4 in lysosomes. Finally, we find that TUG binds directly and specifically to a large intracellular loop in GLUT4. Together, these findings demonstrate that TUG is required to retain GLUT4 intracellularly in 3T3-L1 adipocytes in the absence of insulin and further implicate the insulin-stimulated dissociation of TUG and GLUT4 as an important action by which insulin stimulates glucose uptake.  相似文献   

8.
Murine 3T3-L1 preadipocytes proliferate normally in medium containing fetal calf serum depleted of insulin, growth hormone, and insulin-like growth factor-I (IGF-I). However, the cells do not differentiate into adipocytes in the presence of the hormone-depleted serum. Supplementation of the growth medium with 10-20 nM IGF-I or 2 microM insulin restores the ability of 3T3-L1 cells to develop into adipocytes. The cells acquire an adipocyte morphology, accumulate triglycerides, and express a 450-fold increase in the activity of the lipogenic enzyme glycerol-3-phosphate dehydrogenase. The increase in glycerol-3-phosphate dehydrogenase activity is paralleled by the accumulation of glycerol-3-phosphate dehydrogenase mRNA and mRNA for the myelin P2-like protein aP2, another marker for fat cell development. IGF-I or insulin-stimulated adipogenesis in 3T3-L1 cells is not dependent on growth hormone. Occupancy of preadipocyte IGF-I receptors by IGF-I (or insulin) is implicated as a central step in the differentiation process. The IGF-I receptor binds insulin with a 70-fold lower affinity than IGF-I, and 30-70-fold higher levels of insulin are required to duplicate the effects of an optimal amount of IGF-I. The effects of 10-20 nM IGF-I are likely to be mediated by high affinity (KD = 5 nM) IGF-I receptors that are expressed at a density of 13,000 sites/preadipocyte. In undifferentiated cells the IGF-I receptor concentration is twice that of the insulin receptor. After adipocyte differentiation is triggered, the number and affinity of IGF-I receptors remain constant while insulin receptor number increases approximately 25-fold as developing adipocytes become responsive to insulin at the level of metabolic regulation. Thus, preadipocytes have the potential for a maximal response to IGF-I, whereas the accumulation of more than 95% of adipocyte insulin receptors and the appearance of responsiveness to insulin are consequences of differentiation. IGF-I or insulin is essential for the induction of a variety of abundant and nonabundant mRNAs characteristic of 3T3-L1 adipocytes.  相似文献   

9.
The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4 glucose transporters from the low-density membrane fraction to the plasma membrane. Arsenite did not activate early steps of the insulin receptor (IR)-signalling pathway and the response was insensitive to inhibition of phosphatidylinositol-3'-kinase (PI-3') kinase by wortmannin. These findings indicate that the 'classical' IR-IR substrate-PI-3' kinase pathway, that is essential for insulin-induced GLUT4 translocation, is not activated by arsenite. However, arsenite-treatment did induce tyrosine-phosphorylation of c-Cbl. Furthermore, treatment of the cells with the tyrosine kinase inhibitor, tyrphostin A25, abolished arsenite-induced glucose uptake, suggesting that the induction of a tyrosine kinase by arsenite is essential for glucose uptake. Both arsenite and insulin-induced glucose uptake were inhibited partially by the p38 MAP kinase inhibitor, SB203580. This compound had no effect on the magnitude of translocation of glucose transporters indicating that the level of glucose transport is determined by additional factors. Arsenite- and insulin-induced glucose uptake responded in a remarkably similar dose-dependent fashion to a range of pharmacological- and peptide-inhibitors for atypical PKC-lambda, a downstream target of PI-3' kinase signalling in insulin-induced glucose uptake. These data show that in 3T3-L1 adipocytes both arsenite- and insulin-induced signalling pathways project towards a similar cellular response, namely GLUT1 and GLUT4 translocation and glucose uptake. This response to arsenite is not functionally linked to early steps of the IR-IRS-PI-3' kinase pathway, but does coincide with c-Cbl phosphorylation, basal levels of PKC-lambda activity and p38 MAPK activation.  相似文献   

10.
Insulin-responsive GLUT4 (glucose transporter 4) translocation plays a major role in regulating glucose uptake in adipose tissue and muscle. Whether or not there is a specialized secretory GSV (GLUT4 storage vesicle) pool, and more importantly how GSVs are translocated to the PM (plasma membrane) under insulin stimulation is still under debate. In the present study, we systematically analyzed the dynamics of a large number of single GLUT4-containing vesicles in 3T3-L1 adipocytes by TIRFM (total internal reflection fluorescence microscopy). We found that GLUT4-containing vesicles can be classified into three groups according to their mobility, namely vertical, stable, and lateral GLUT4-containing vesicles. Among these groups, vertical GLUT4-containing vesicles exclude transferrin receptors and move towards the PM specifically in response to insulin stimulation, while stable and lateral GLUT4-containing vesicles contain transferrin receptors and show no insulin responsiveness. These data demonstrate that vertical GLUT4-containing vesicles correspond to specialized secretory GSVs, which approach the PM directly and bypass the constitutive recycling pathway. Contributed equally to this work Supported by the National Natural Science Foundation of China (Grant Nos. 30470448 and 30130230), the National key Basic Research Program of China (Grant No. 2004CB720000), the Knowledge Innovative Program of The Chinese Academy of Sciences (Grant Nos. KSCX2-SW-224 and Y2004018), the Li Foundation and the Sinogerman Scientific Center.  相似文献   

11.
Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes   总被引:6,自引:1,他引:6       下载免费PDF全文
《The Journal of cell biology》1995,130(5):1081-1091
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus- resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino- terminal mutants. Both NH2- and COOH-terminal mutants retained insulin- dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin- dependent redistribution of GLUT-4. We conclude that the phenylalanine- based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.  相似文献   

12.
Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.  相似文献   

13.
14.
Insulin stimulation of glucose transport in fat and muscle cells occurs, at least in part, by the translocation of glucose transporters from intracellular membranes to the plasma membrane. In this report, we describe the isolation and partial characterization of vesicles containing translocatable intracellular transporters from 3T3-L1 adipocytes. The glucose transporter content of light microsomes in a 44,000 X g cell supernatant was found to decrease by 50% in response to insulin treatment of the adipocytes. A procedure was developed for the purification of transporter-containing vesicles from this supernatant by immunoadsorption onto Staphylococcus aureus cells coated with anti-transporter antibodies. The vesicles are about 50 nm in diameter and have a distinct polypeptide composition. After insulin treatment the number of transporter-containing vesicles decreased by about 50%, as determined both by microscopic analysis of vesicle number and by the relative abundance of vesicle polypeptides.  相似文献   

15.
Methotrexate (MTX) is broadly used in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA). The prevalence of metabolic syndrome (MeS) in patients with this condition is relatively high. Given the importance of adipose tissue in the development of obesity metabolic complications, this study aimed to investigate the effect of methotrexate on preadipocyte proliferation, adipogenesis, and glucose uptake by adipocytes. 3T3-L1 preadipocytes proliferation was evaluated by sulforhodamine B staining and 3H-thymidine incorporation, after 24 or 48 h of treatment with MTX (0.1 and 10 μM). Preadipocytes were induced to differentiate with an appropriate adipogenic cocktail in the presence or absence of MTX. Adipogenesis was determined by measuring lipid accumulation after staining with oil red O. 3H-Deoxyglucose (3H-DG) uptake was determined by liquid scintillation counting. MTX treatment reduced culture protein content in a concentration-dependent manner and 3H-thymidine incorporation (P?<?0.05). MTX (0.1 μM) treatment increased lipid accumulation and basal 3H-DG uptake by adipocytes (P?<?0.05). In 0.1 μM MTX-treated adipocytes, insulin stimulation did not result in an increase of 3H-DG uptake, contrarily to what was observed in control cells. These results demonstrate that methotrexate interferes with adipocyte proliferation and promotes the hypertrophic growth of adipocytes. These molecular effects may have implications on metabolic profile of RA patients treated with MTX.  相似文献   

16.
17.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

18.
19.
20.
Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes   总被引:9,自引:0,他引:9  
The insulin-responsive aminopeptidase (IRAP/VP165/gp160) was identified originally in GLUT4-containing vesicles and shown to translocate in response to insulin, much like the glucose transporter 4 (GLUT4). This study characterizes the trafficking and kinetics of IRAP in exocytosis, endocytosis, and recycling to the membrane in 3T3-L1 adipocytes. After exposure of 3T3-L1 adipocytes to insulin, IRAP translocated to the plasma membrane as assessed by either cell fractionation, surface biotinylation, or the plasma membrane sheet assay. The rate of exocytosis closely paralleled that of GLUT4. In the continuous presence of insulin, IRAP was endocytosed with a half-time of about 3-5 min. IRAP endocytosis is inhibited by cytosol acidification, a property of clathrin-mediated endocytosis, but not by the expression of a constitutively active Akt/PKB. Arrival in an LDM fraction derived via subcellular fractionation exhibited a slower time course than disappearance from the cell surface, suggesting additional endocytic intermediates. As assayed by membrane "sheets," GLUT4 and IRAP showed similar internalization rates that are wortmannin-insensitive and occur with a half-time of roughly 5 min. IRAP remaining on the cell surface 10 min following insulin removal was both biotin- and avidin-accessible, implying the absence of thin-necked invaginations. Finally, endocytosed IRAP quickly recycled back to the plasma membrane in a wortmannin-sensitive process. These results demonstrate rapid endocytosis and recycling of IRAP in the presence of insulin and trafficking that matches GLUT4 in rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号