首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two closely related subgroups of group I pseudomonads, which differ from one another in the overall enzymatic makeup of aromatic amino acid biosynthesis, possess in common the recently characterized major (tyrosine-sensitive) and minor (tryptophan-sensitive) isozymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Pseudomonas aeruginosa (17). Since these characterizations were made for strains whose phylogenetic positions have been determined by oligonucleotide cataloging, an initial perception of the evolution of aromatic pathway construction and regulation is emerging.  相似文献   

2.
The evolutionary history of isozymes for 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase has been constructed in a phylogenetic cluster of procaryotes (superfamily B) that includes Escherichia coli. Members of superfamily B that have been positioned on a phylogenetic tree by oligonucleotide cataloging possess one or more of four distinct isozymes of DAHP synthase. DAHP synthase-0 is insensitive to feedback inhibition, while DAHP synthase-Tyr, DAHP synthase-Trp, and DAHP synthase-Phe are sensitive to feedback inhibition by L-tyrosine, L-tryptophan, and L-phenylalanine, respectively. The evolutionary history of this isozyme family can be deduced within superfamily B by using a cladistic methodology of maximum parsimony (R. A. Jensen, Mol. Biol. Evol. 2:92-108, 1985). DAHP synthase-0 was found in Acinetobacter species and in Oceanospirillum minutulum, organisms that also possess DAHP synthase-Tyr. These two isozymes were apparently present in a common ancestor that predated the evolutionary divergence of contemporary superfamily B sublineages. DAHP synthase-0 is postulated to have been the evolutionary forerunner of DAHP synthase-Trp. The newly evolved DAHP synthase-Trp is postulated to have possessed sensitivity to feedback inhibition by chorismate as well as by L-tryptophan, chorismate sensitivity having been retained in rRNA group I pseudomonads (minor sensitivity), group V pseudomonads (very sensitive), and Lysobacter enzymogenes (ultrasensitive). Organisms constituting the enteric lineage of the phylogenetic tree (including a cluster of four Oceanospirillum species) have all lost the chorismate sensitivity of DAHP synthase-Trp. The absence of DAHP synthase-Phe in the Oceanospirillum cluster of organisms supports the previous conclusion that DAHP synthase-Phe evolved recently within superfamily B, being present only Escherichia coli and its close relatives.  相似文献   

3.
Entus R  Poling M  Herrmann KM 《Plant physiology》2002,129(4):1866-1871
The cDNA for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Arabidopsis encodes a polypeptide with an amino-terminal signal sequence for plastid import. A cDNA fragment encoding the processed form of the enzyme was expressed in Escherichia coli. The resulting protein was purified to electrophoretic homogeneity. The enzyme requires Mn(2+) and reduced thioredoxin (TRX) for activity. Spinach (Spinacia oleracea) TRX f has an apparent dissociation constant for the enzyme of about 0.2 microM. The corresponding constant for TRX m is orders of magnitude higher. In the absence of TRX, dithiothreitol partially activates the enzyme. Upon alkylation of the enzyme with iodoacetamide, the dependence on a reducing agent is lost. These results indicate that the first enzyme in the shikimate pathway of Arabidopsis appears to be regulated by the ferredoxin/TRX redox control of the chloroplast.  相似文献   

4.
Racemic 2-deoxyerythrose 4-phosphate was synthesized and one enantiomer of this compound was found to be a substrate for Escherichia coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway. When the reaction was carried out in deuterium oxide, an enzyme-catalyzed regio- and stereoselective incorporation of deuterium into the product was observed.  相似文献   

5.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

6.
7.
E J Parker  E M Bulloch  G B Jameson  C Abell 《Biochemistry》2001,40(49):14821-14828
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS, EC 4.1.2.15) catalyzes the condensation of phosphoenolpyruvate (PEP) with erythrose 4-phosphate (E4P) to give DAH7P via an ordered sequential mechanism. In the absence of PEP (the first substrate to bind), E4P binds covalently to the phenylalanine-sensitive DAH7PS of Escherichia coli, DAH7PS(Phe), deactivating the enzyme. Activity is restored on addition of excess PEP but not if deactivation was carried out in the presence of sodium cyanoborohydride. Electrospray mass spectrometry indicates that a single E4P is bound to the protein. These data are consistent with a slow, reversible Schiff base reaction of the aldehydic functionality of E4P with a buried lysine. Molecular modeling indicates that Lys186, a residue at the base of the substrate-binding cavity involved in hydrogen bonding with PEP, is well placed to react with E4P forming an imine linkage that is substantially protected from solvent water.  相似文献   

8.
9.
10.
A cDNA encoding potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, was cloned into phage lambda gt11. The clone represents the first cDNA for this enzyme from any eukaryotic source. The nucleotide sequence of the cDNA was determined, and its identity was confirmed through partial amino acid sequence analysis of the encoded enzyme. The cDNA contains a 1527-base pair open reading frame that encodes a polypeptide with a calculated molecular weight of 56,153. The amino terminus of the deduced polypeptide resembles a chloroplast transit sequence. Amino acid sequence identities between the mature potato enzyme and the homologous isoenzymes from Escherichia coli are only about 22%. The potato cDNA hybridized to various plant mRNAs that are all about 2 kilobases in size.  相似文献   

11.
3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAH7P) synthase catalyses the first step of the shikimate pathway for the biosynthesis of aromatic compounds. Enzymes of this pathway have been identified as potential targets for drug design. The reaction catalysed by DAH7P synthase is an aldol condensation between phosphoenolpyruvate (PEP) and d-erythrose 4-phosphate (E4P). In this study inhibitors of DAH7P synthase were prepared which were designed to fit into the binding sites of both PEP and E4P substrates simultaneously. Inhibitors, known to target the PEP binding site, were extended using a C4 linker to include an appropriately placed phosphate group in order to access the phosphate-binding site of E4P. A small increase in inhibition was observed with this modification, and the inhibition results have been rationalised by induced-fit docking.  相似文献   

12.
Metal binding properties for a series of metal-substituted forms of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, DAHPS(Tyr), have been followed by UV-vis and EPR spectroscopy. The results show that there are two metal species present at pH = 7.0 and these are coordinated in a distorted metal binding site with a mixed nitrogen and oxygen donor atom coordination set. There is no spectroscopic evidence for strong M-S interactions in this system at any pH. Metal saturation occurs at a substoichiometric ratio of 0.8-0.85 metal/monomer, and the binding trends mirror previously published enzyme activity profiles. There is a conformational change for CuDAHPS under basic conditions, and equivalent protein handling for apoDAHPS leads to apparent loss of metal binding ability. Addition of the substrate PEP does not alter the UV-vis spectra, but there are small changes in the EPR spectra of CuDAHPS(Tyr). Further addition of the substrate analogue A5P has no effect on either spectra. Taken together, these results serve to link previous studies on enzyme activity with the recently determined X-ray crystal structure for DAHPS(Phe) and represent the first detailed spectroscopic characterization of the metal binding properties of DAHPS(Tyr).  相似文献   

13.
The first enzyme in the shikimic acid biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS), varies significantly in size and complexity in the bacteria and plants that express it. The DAH7PS from the archaebacterium Aeropyrum pernix (DAH7PS(Ap)) is among the smallest and least complex of the DAH7PS enzymes, leading to the hypothesis that DAH7PS(Ap) would not be subject to feedback regulation by shikimic acid pathway products. We overexpressed DAH7PS(Ap) in Escherichia coli, purified it, and characterized its enzymatic activity. We then solved its X-ray crystal structure with a divalent manganese ion and phosphoenolpyruvate bound (PDB ID: 1VS1). DAH7PS(Ap) is a homodimeric metalloenzyme in solution. Its enzymatic activity increases dramatically above 60 °C, with optimum activity at 95 °C. Its pH optimum at 60 °C is 5.7. DAH7PS(Ap) follows Michaelis-Menten kinetics at 60 °C, with a K(M) for erythrose 4-phosphate of 280 μM, a K(M) for phosphoenolpyruvate of 891 μM, and a k(cat) of 1.0 s(-1). None of the downstream products of the shikimate biosynthetic pathway we tested inhibited the activity of DAH7PS(Ap). The structure of DAH7PS(Ap) is similar to the structures of DAH7PS from Thermatoga maritima (PDB ID: 3PG8) and Pyrococcus furiosus (PDB ID: 1ZCO), and is consistent with its designation as an unregulated DAH7PS.  相似文献   

14.
Tyrosine feedback-inhibits the 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase isoenzyme AroF of Escherichia coli. Here we show that an Asn-8 to Lys-8 substitution in AroF leads to a tyrosine-insensitive DAHP synthase. This mutant enzyme exhibited similar activities (v=30-40 U mg(-1)) and substrate affinities (K(m)(erythrose-4-phosphate)=0.5 mM, positive cooperativity with respect to phospho(enol)pyruvate) as the wild-type AroF, but showed decreased thermostability. An engineered AroF enzyme lacking the seven N-terminal residues also was tyrosine-resistant. These results strongly suggest that the N-terminus of AroF is involved in the molecular interactions occurring in the feedback-inhibition mechanism.  相似文献   

15.
In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme.  相似文献   

16.
The evolution of aromatic amino acid biosynthesis and its regulation is under study in a large assemblage of prokaryotes (Superfamily A) whose phylogenetic arrangement has been constructed on the criterion of oligonucleotide cataloging. One section of this Superfamily consists of a well defined (rRNA homology) cluster denoted as Group III pseudomonads. Pseudomonas acidovorans ATCC 11299a, a Group III member, was chosen for indepth studies of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase, the initial regulatory enzyme of aromatic biosynthesis. This strain is of particular interest for evolutionary studies of aromatic metabolism because it possesses phenylalanine hydroxylase, an enzyme whose physiological role and distribution among prokaryotes is largely unknown. Although P. acidovorans ATCC 11299a has been of uncertain identity, we now establish it unambiguously as a species of acidovorans by virtue of its 87% DNA homology with P. acidovorans ATCC 15668 (type strain). This result conformed with enzyme patterning studies which placed ATCC 11299a into pseudomonad Group IIIa, a subgroup containing the acidovorans species. Crude extracts of Group III pseudomonads had previously been shown to share, as a common group characteristic, sensitivity of DAHP synthase to feedback inhibition by either l-tyrosine or l-phenylalanine. Detailed studies with partially purified preparations from strain ATCC 11299a revealed the presence of two distinct regulatory isozymes, DAHP synthase-phe and DAHP synthase-tyr. DAHP synthase-tyr is tightly controlled by l-tyrosine with 50% inhibition of activity being achieved at 4.0 M effector. DAHP synthase-phe is inhibited 50% by 40 M l-phenylalanine and exhibits dramatic changes in levels of activity, as well as chromatographic elution patterns, in response to dithiothreitol. This two-isozyme pattern of DAHP synthase has not been described previously, although it may prove to be widespread.Abbreviations DAHP 3-deoxy-d-arabino-heptulosonate 7-phosphate - E4P d-erythrose-4-phosphate - PEP phosphoenolpyruvate - DTT dithiothreitol - BSA fraction V bovine serum albumin  相似文献   

17.
3-Deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 2.5.1.54) catalyzes the first step of the shikimate pathway that finally leads to the biosynthesis of aromatic amino acids phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr). In Corynebacterium glutamicum ATCC 13032, two chromosomal genes, NCgl0950 (aroF) and NCgl2098 (aroG), were located that encode two putative DAHP synthases. The deletion of NCgl2098 resulted in the loss of the ability of C. glutamicum RES167 (a restriction-deficient strain derived from C. glutamicum ATCC 13032) to grow in mineral medium; however, the deletion of NCgl0950 did not result in any observable phenotypic alteration. Analysis of DAHP synthase activities in the wild type and mutants of C. glutamicum RES167 indicated that NCgl2098, rather than NCgl0950, was involved in the biosynthesis of aromatic amino acids. Cloning and expression in Escherichia coli showed that both NCgl0950 and NCgl2098 encoded active DAHP synthases. Both the NCgl0950 and NCgl2098 DAHP synthases were purified from recombinant E. coli cells and characterized. The NCgl0950 DAHP synthase was sensitive to feedback inhibition by Tyr and, to a much lesser extent, by Phe and Trp. The NCgl2098 DAHP synthase was slightly sensitive to feedback inhibition by Trp, but not sensitive to Tyr and Phe, findings that were in contrast to the properties of previously known DAHP synthases from C. glutamicum subsp. flavum. Both Co2+ and Mn2+ significantly stimulated the NCgl0950 DAHP synthase's activity, whereas Mn2+ was much more stimulatory than Co2+ to the NCgl2098 DAHP synthase's activity.  相似文献   

18.
Chorismate mutase (CM) and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS) are key regulatory enzymes in L-Phe and L-Tyr biosynthesis in Amycolatopsis methanolica. At least two CM proteins, CMIa and CMIb, are required for the single chorismate mutase activity in the wild type. Component CMIa (a homodimeric protein with 16-kDa subunits) was purified to homogeneity (2,717-fold) and kinetically characterized. The partially purified CMIb preparation obtained also contained the single DS (DSI) activity detectable in the wild type. The activities of CMIa and CMIb were inhibited by both L-Phe and L-Tyr. DSI activity was inhibited by L-Trp, L-Phe, and L-Tyr. A leaky L-Phe-requiring auxotroph, mutant strain GH141, grown under L-Phe limitation, possessed additional DS (DSII) and CM (CMII) activities. Synthesis of both CMII and DSII was repressed by L-Phe. An ortho-DL-fluorophenylalanine-resistant mutant of the wild type (strain oFPHE83) that had lost the sensitivity of DSII and CMII synthesis to L-Phe repression was isolated. DSII was partially purified (a 42-kDa protein); its activity was strongly inhibited by L-Tyr. CMII was purified to homogeneity (93.6 fold) and characterized as a homodimeric protein with 16-kDa subunits, completely insensitive to feedback inhibition by L-Phe and L-Tyr. The activity of CMII was activated by CMIb; the activity of CMII plus CMIb was again inhibited by L-Phe and L-Tyr. A tightly blocked L-Phe- plus L-Tyr-requiring derivative of mutant strain GH141, GH141-19, that had lost both CMIa and CMII activities was isolated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The steady-state kinetic properties of purified tryptophan-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Neurospora crassa were examined. The results suggest that the enzyme obeys a Rapid-Equilibrium Ordered mechanism, in which phosphoenolpyruvate is the first substrate to bind and 3-deoxy-D-arabino-heptulosonate 7-phosphate is the second product to be released, rather than a Ping Pong mechanism as has been reported previously. The inhibition by tryptophan was found to be parabolic competitive with respect to D-erythrose 4-phosphate and parabolic non-competitive with respect to phosphoenolpyruvate. The enzyme was inactivated by EDTA, and could be protected against this inactivation by phosphoenolpyruvate or 3-deoxy-D-arabino-heptulosonate 7-phosphate but not by D-erythrose 4-phosphate, tryptophan or Pi. This suggests that the enzyme may be a metalloenzyme.  相似文献   

20.
The enzyme 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the condensation reaction between phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P). DAH7PS from the hyperthermophile Pyrococcus furiosus has been expressed in Escherichia coli. The expressed protein was insoluble but was partially solubilized as a dimer by the inclusion of 200 mM KCl in the cell lysis buffer. An effective two step purification procedure has been developed. The first step resulted in a high degree of purification and involved lysis by sonication at approximately 40 degrees C followed by a heat treatment at 70 degrees C. A continuous assay measuring the loss of PEP at 232 nm at elevated temperatures was also developed. Temperature, pH, and divalent metal ions all had an effect on the extinction coefficient of PEP. Purified recombinant P. furiosus DAH7PS is a dimer with a subunit Mr of 29,226 (determined by ESMS), shows resistance to denaturation by SDS, has activity over a broad pH range, and has an activation energy of 88 kJmol-1. The kinetic parameters are Km (PEP) 120 microM, Km (E4P) 28 microM, and kcat 1.5s-1, at 60 degrees C and pH 6.8. DAH7PS is not inhibited by phenylalanine, tyrosine, or tryptophan. EDTA inactivates the enzyme and enzyme activity is restored by a wide range of divalent metal ions including (in order of decreasing effectiveness): Zn2+, Cd2+, Mn2+, Co2+, Ni2+, Ca2+, Hg2+, and Cu2+. This detailed characterization of the DAH7PS from P. furiosus raises the possibility that the subfamily Ibeta DAH7PS enzymes are metal ion dependent, contrary to previous predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号