首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: To investigate the role of surface membrane proteins (MP) to promote attachment to chitin particles and copepods of different environmental and clinical vibrios. METHOD AND RESULTS: The role of surface MP to promote attachment to chitin particles and the copepod Tigriopus fulvus was investigated in several environmental and clinical Vibrio strains by inhibition test methods. Attachment to both substrates was significantly inhibited by homologous MP treatment in all strains and percentages of inhibition were comparable with the ones observed with N-acetyl glucosamine (GlcNAc). Sarkosyl-insoluble MP extracted from tested strains were added to chitin particles either in the presence or in the absence of GlcNAc and the fraction bound to chitin in both conditions was visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Chitin-binding proteins (CBP) defined as Sarkosyl-insoluble MP that bound chitin in the absence of GlcNAc but did not in the presence of the sugar were isolated in all strains. CONCLUSION: CBP are common in both environmental and clinical Vibrio strains and they have an important general role in mediating cell interactions with chitin-containing surfaces. SIGNIFICANT AND IMPACT OF THE STUDY: The role of CBP should be taken into account when investigating environmental persistence of aquatic vibrios.  相似文献   

2.
The effect of exposure to artificial sea water (ASW) on the ability of classical Vibrio cholerae O1 cells to interact with chitin-containing substrates and human intestinal cells was studied. Incubation of vibrios in ASW at 5 degrees C and 18 degrees C resulted in two kinds of cell responses: the viable but non-culturable (VBNC) state (i.e. <0.1 colony forming unit ml-1) at 5 degrees C, and starvation (i.e. maintenance of culturability of the population) at 18 degrees C. The latter remained rod shaped and, after 40 days' incubation, presented a 47-58% reduction in the number of cells attached to chitin, a 48-53% reduction in the number of bacteria adhering to copepods, and a 48-54% reduction in the number of bacteria adhering to human cultured intestinal cells, compared to control cells not suspended in ASW. Bacteria suspended in ASW at 5 degrees C became coccoid and, after 40 days, showed 34-42% fewer cells attached to chitin, 52-55% fewer adhering to copep-ods, and 45-48% fewer cells adhering to intestinal cell monolayers, compared to controls. Sarkosyl-insoluble membrane proteins that bind chitin particles were isolated and analysed by SDS-PAGE. After 40 days incubation in ASW at both 5 degrees C and 18 degrees C vibrios expressed chitin-binding ligands similar to bacteria harvested in the stationary growth phase. It is concluded that as vibrios do not lose adhesive properties after long-term exposure to ASW, it is important to include methods for VBNC bacteria when testing environmental and clinical samples for purposes of public health safety.  相似文献   

3.
The reaction pattern of an extracellular chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum ATCC 56676, was investigated by use of chitooligosaccharides [(GlcNAc)(n)(), n = 3-6] and partially N-deacetylated chitooligosaccharides as substrates. When 0.5% of (GlcNAc)(n)() was deacetylated, the corresponding monodeacetylated products were initially detected without any processivity, suggesting the involvement of a multiple-chain mechanism for the deacetylation reaction. The structural analysis of these first-step products indicated that the chitin deacetylase strongly recognizes a sequence of four N-acetyl-D-glucosamine (GlcNAc) residues of the substrate (the subsites for the four GlcNAc residues are defined as -2, -1, 0, and +1, respectively, from the nonreducing end to the reducing end), and the N-acetyl group in the GlcNAc residue positioned at subsite 0 is exclusively deacetylated. When substrates of a low concentration (100 microM) were deacetylated, the initial deacetylation rate for (GlcNAc)(4) was comparable to that of (GlcNAc)(5), while deacetylation of (GlcNAc)(3) could not be detected. Reaction rate analyses of partially N-deacetylated chitooligosaccharides suggested that subsite -2 strongly recognizes the N-acetyl group of the GlcNAc residue of the substrate, while the deacetylation rate was not affected when either subsite -1 or +1 was occupied with a D-glucosamine residue instead of GlcNAc residue. Thus, the reaction pattern of the chitin deacetylase is completely distinct from that of a Zygomycete, Mucor rouxii, which produces a chitin deacetylase for accumulation of chitosan in its cell wall.  相似文献   

4.
Forty-one Tnpho A mutants of Vibrio cholerae O1 classical strain CD81 were analyzed for their ability to interact with chitin particles, Tigriopus fulvus copepods and the Intestine 407 cell line compared to the parent strain. Thirteen mutants were less adhesive than CD81; in particular, T21, T33 and T87 were less adhesive towards all substrates and insensitive to inhibition by N-acetyl glucosamine (GlcNAc). By SDS-PAGE analysis of sarkosyl-insoluble membrane proteins (siMPs) isolated from mutants and parent, it was found that a 53 kDa siMP is missing in T21, T33 and T87 mutants. It is hypothesized that this protein might have the function to mediate adherence to GlcNAc-containing substrates both in the aquatic environment and in human intestine.  相似文献   

5.
Li X  Wang LX  Wang X  Roseman S 《Glycobiology》2007,17(12):1377-1387
Chitin, one of the most abundant organic substances in nature, is consumed by marine bacteria, such as Vibrio cholerae, via a multitude of tightly regulated genes (Li and Roseman 2004, Proc Natl Acad Sci USA. 101:627-631). One such gene, cod, is reported here. It encodes a chitin oligosaccharide deacetylase (COD), when cells are induced by chitobiose, (GlcNH(2))(2), or crude crab shells. COD was molecularly cloned (COD-6His), overproduced, and purified to apparent homogeneity. COD is secreted at all stages of growth by induced V. cholerae. The gene sequence predicts a 26 N-terminal amino acid signal peptide not found in the isolated protein. COD is very active with chitin oligosaccharides, is virtually inactive with GlcNAc, and slightly active with colloidal ([(3)H]-N-acetyl)-chitin. The oligosaccharides are converted almost quantitatively to products lacking one acetyl group. The latter were characterized by mass spectrometry (ESI-MS), and treatment with nitrous acid. COD catalyzes the following reactions (n = 2-6): (GlcNAc)(n)--> GlcNAc-GlcNH(2)-(GlcNAc)(n-2) + Ac(-). That is, COD hydrolyzes the N-acetyl groups attached to the penultimate GlcNAc residue. The gene bank sequence data show that cod is highly conserved in Vibrios and Photobacteria. One such gene encodes a deacetylase isolated from V. alginolytics (Ohishi et al. 1997, Biosci Biotech Biochem. 61:1113-1117; Ohishi et al. 2000, J Biosci Bioeng. 90:561-563), that is specific for (GlcNAc)(2), but inactive with higher oligosaccharides. The COD enzymatic products, GlcNAc-GlcNH(2)-(GlcNAc)(n), closely resemble those obtained by hydrolysis of the chitooligosaccharides with Nod B: GlcNH(2)-(GlcNAc)(3-4). The latter are key intermediates in the biosynthesis of Nod factors, critically important in communications between the symbiotic nitrogen fixing bacteria and plants. Conceivably, the COD products play equally important roles in cellular communications that remain to be defined.  相似文献   

6.
A mutant of Candida albicans ATCC 10261 was isolated that was defective in the production of beta-N-acetylglucosaminidase (chitobiase). The mutant grew normally in minimal medium supplemented with either glucose or N-acetyl-D-glucosamine (GlcNAc) as carbon and energy source, and the cells formed germ-tubes at 37 degrees C when induced to do so with GlcNAc. However, unlike the wild-type parent strain, the mutant strain did not utilize N,N'-diacetylchitobiose for growth. The mutant and parent strains had similar growth rates on glucose or GlcNAc, similar rates of uptake of these sugars and similar rates of 14C-labelled amino acid incorporation. The chitobiase mutant did, however, contain 53-85% more chitin than the wild-type strain. No reversion of the mutant phenotype was observed following induction of mitotic recombination with UV light, suggesting that the mutant allele (chi) was carried homozygously in the chitobiase-deficient mutant. Although the chitobiase-deficient mutant was pathogenic, it was not as virulent as the wild-type strain.  相似文献   

7.
The major product of bacterial chitinases is N,N'-diacetylchitobiose or (GlcNAc)(2). We have previously demonstrated that (GlcNAc)(2) is taken up unchanged by a specific permease in Vibrio furnissii (unlike Escherichia coli). It is generally held that marine Vibrios further metabolize cytoplasmic (GlcNAc)(2) by hydrolyzing it to two GlcNAcs (i.e. a "chitobiase "). Here we report instead that V. furnissii expresses a novel phosphorylase. The gene, chbP, was cloned into E. coli; the enzyme, ChbP, was purified to apparent homogeneity, and characterized kinetically. The DNA sequence indicates that chbP encodes an 89-kDa protein. The enzymatic reaction was characterized as follows. (GlcNAc)(2)+P(i) GlcNAc-alpha-1-P+GlcNAc K'(cq)=1.0+/-0.2 Reaction 1 The K(m) values for the four substrates were in the range 0.3-1 mm. p-Nitrophenyl-(GlcNAc)(2) was cleaved at 8.5% the rate of (GlcNAc)(2), and p-nitrophenyl (PNP)-GlcNAc was 36% as active as GlcNAc in the reverse direction. All other compounds tested displayed 相似文献   

8.
We showed previously that chitin catabolism by the marine bacterium Vibrio furnissii involves at least three signal transduction systems and many genes, several of which were molecularly cloned, and the corresponding proteins were characterized. The predicted amino acid sequences of these proteins showed a high degree of identity to the corresponding proteins from Vibrio cholerae, whose complete genomic sequence has recently been determined. We have therefore initiated studies with V. cholerae. We report here a novel ATP-dependent glucosamine kinase of V. cholerae encoded by a gene designated gspK. The protein, GspK (31.6 kDa), was purified to apparent homogeneity from recombinant Escherichia coli. The product of the reaction was shown to be GlcN-6-P by matrix-assisted laser desorption/ionization-time of flight (MALDI mass spectrometry) and NMR. The K(m) values for GlcN, ATP, and MgCl(2) were 0.45, 2.4, and 2.2 mm, respectively, and the V(max) values were in the range 180-200 nmol/microg/min (approximately 6 nmol/pmol/min). Kinase activity was not observed with any other sugar, including: galactosamine, mannosamine, Glc, GlcNAc, GalNAc, mannose, 2-deoxyglucose, and oligosaccharides of chitosan. The enzyme is also ATP-specific. The kinase can be used to specifically determine micro quantities of GlcN in acid hydrolysates of glycoconjugates. The physiological function of this enzyme remains to be determined.  相似文献   

9.
10.
The marine bacterium Microbulbifer degradans strain 2-40 produces at least 10 enzyme systems for degrading insoluble complex polysaccharides (ICP). The draft sequence of the 2-40 genome allowed a genome-wide analysis of the chitinolytic system of strain 2-40. The chitinolytic system includes three secreted chitin depolymerases (ChiA, ChiB, and ChiC), a secreted chitin-binding protein (CbpA), periplasmic chitooligosaccharide-modifying enzymes, putative sugar transporters, and a cluster of genes encoding cytoplasmic proteins involved in N-acetyl-D-glucosamine (GlcNAc) metabolism. Each chitin depolymerase was detected in culture supernatants of chitin-grown strain 2-40 and was active against chitin and glycol chitin. The chitin depolymerases also had a specific pattern of activity toward the chitin analogs 4-methylumbelliferyl-beta-D-N,N'-diacetylchitobioside (MUF-diNAG) and 4-methylumbelliferyl-beta-D-N,N',N"-triacetylchitotrioside (MUF-triNAG). The depolymerases were modular in nature and contained glycosyl hydrolase family 18 domains, chitin-binding domains, and polycystic kidney disease domains. ChiA and ChiB each possessed polyserine linkers of up to 32 consecutive serine residues. In addition, ChiB and CbpA contained glutamic acid-rich domains. At 1,271 amino acids, ChiB is the largest bacterial chitinase reported to date. A chitodextrinase (CdxA) with activity against chitooligosaccharides (degree of polymerization of 5 to 7) was identified. The activities of two apparent periplasmic (HexA and HexB) N-acetyl-beta-D-glucosaminidases and one cytoplasmic (HexC) N-acetyl-beta-D-glucosaminidase were demonstrated. Genes involved in GlcNAc metabolism, similar to those of the Escherichia coli K-12 NAG utilization operon, were identified. NagA from strain 2-40, a GlcNAc deacetylase, was shown to complement a nagA mutation in E. coli K-12. Except for the GlcNAc utilization cluster, genes for all other components of the chitinolytic system were dispersed throughout the genome. Further examination of this system may provide additional insight into the mechanisms by which marine bacteria degrade chitin and provide a basis for future research on the ICP-degrading systems of strain 2-40.  相似文献   

11.
Chitin was found to interact with bovine blood proteins and the affinities of these proteins for chitin tended to be decreased by the introduction of O-carboxymethyl (CM) groups onto the chitin surface, especially with fibrinogen. As the adsorption of blood proteins to the CM-chitin (d.s. 0.35) was assumed to follow an isothermal adsorption-curve, the adsorption coefficients were estimated by applying the Langmuir equation. Bovine serum albumin showed the highest affinity among the proteins applied in this experiment [KBSA (bovine serum albumin); 20.0, KB gamma G (bovine gamma globulin); 1.96, KBF (bovine fibrinogen); 1.20]. The binding site of BSA for CM-chitin was assumed to be regulated not only by the cationic groups of BSA but also by other factors such as the recognition capacity of BSA to bind to GlcNAc residues in CM-chitin.  相似文献   

12.
Attachment of Vibrio cholerae to the mucosal surface of the intestine is considered to be an important virulence characteristic. Vibrio cholerae, an autochthonous member of brackish water and estuarine bacterial communities, also attaches to crustacea, a significant factor in multiplication and survival of V. cholerae in nature. The ability of V. cholerae to attach to the gut wall of the blue crab (Callinectes sapidus) was examined, and attachment was observed only in the hindgut and not the midgut of crabs, confirming a requirement for chitin in the attachment of V. cholerae to invertebrate and zooplankton surfaces. The new finding of attachment of V. cholerae to the hindgut of crabs may be correlated with the epidemiology and transmission of cholera in the aquatic environment. The crab model may also prove useful in elucidating the mechanism(s) of ion transport in crustacea.  相似文献   

13.
Attachment of Vibrio cholerae to the mucosal surface of the intestine is considered to be an important virulence characteristic. Vibrio cholerae, an autochthonous member of brackish water and estuarine bacterial communities, also attaches to crustacea, a significant factor in multiplication and survival of V. cholerae in nature. The ability of V. cholerae to attach to the gut wall of the blue crab (Callinectes sapidus) was examined, and attachment was observed only in the hindgut and not the midgut of crabs, confirming a requirement for chitin in the attachment of V. cholerae to invertebrate and zooplankton surfaces. The new finding of attachment of V. cholerae to the hindgut of crabs may be correlated with the epidemiology and transmission of cholera in the aquatic environment. The crab model may also prove useful in elucidating the mechanism(s) of ion transport in crustacea.  相似文献   

14.
15.
Commercial non-chitinase enzymes from Aspergilus niger, Acremonium cellulolyticus and Trichoderma viride were investigated for potential utilization in the preparation of 2-acetamido-2-deoxy-D-glucose (N-acetyl-D-glucosamine, GlcNAc) from chitin. Among the tested enzymes, cellulase A. cellulolyticus exhibited highest chitinolytic activity per weight toward amorphous chitin and beta-chitin from squid pen. The optimum pH of the enzyme was 3 where it produced two major hydrolytic products, GlcNAc and N,N'-diacetylchitobiose ([GlcNAc](2)). The product ratio, GlcNAc:[GlcNAc](2), increased while the total yield decreased as the pH was raised from 3. All of the [GlcNAc](2) produced at pH 3 can be converted in situ to GlcNAc by mixing cellulase A. cellulolyticus with one of several other enzymes from A. niger resulting in a higher yield of GlcNAc. An appropriate mixing ratio of cellulase A. cellulolyticus to another enzyme was 9:1 (w/w) and an optimum substrate concentration was 20 mg/mL.  相似文献   

16.
Chitinolytic properties of Bacillus pabuli K1   总被引:3,自引:1,他引:3  
The chitinolytic properties of Bacillus pabuli K1 isolated from mouldy grain was studied. Chitinase activity was measured as the release of p -nitrophenol from p -nitrophenyl-N, N'-diacetylchitobiose. Influences of substrate concentration and different environmental variables on growth and chitinase activity were determined. The optimum environmental conditions for chitinase production were: 30°C, initial pH 8, initial oxygen 10% and aw > 0.99. Chitinase production was induced when B. pabuli K1 was grown on colloidal chitin. The smallest chito-oligosaccharide able to induce chitinase production was N, N'-diacetylchitobiose, (GlcNAc)2. Production was also induced by (GlcNAc)3 and (GlcNAc)4. When the bacterium was grown on glucose or N -acetylglucosamine, no chitinases were formed. The highest chitinase production observed was obtained with colloidal chitin as substrate. The production of chitinases by B. pabuli K1 growing on chitin was repressed by high levels (0.6%) of glucose. The production was also repressed by 0.6% starch, laminarin and β-glucan from barley and by glycerol. The addition of pectin and carboxymethyl cellulose increased chitinase production.  相似文献   

17.
We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mutant of V. harveyi to chitin was about twice as much as that of the uninduced wild type. Detergent-extracted cell membranes inhibited attachment and contained a 53-kDa peptide that was overproduced by the chitinase-overproducing mutant. Three peptides (40, 53, and 150 kDa) were recovered from chitin which had been exposed to membrane extracts. Polyclonal antibodies raised against extracellular chitinase cross-reacted with the 53- and 150-kDa chitin-binding peptides and inhibited attachment, probably by sterically hindering interactions between the chitin-binding peptides and chitin. The 53- and 150-kDa chitin-binding peptides did not have chitinase activity. These results suggest that chitin-binding peptides, especially the 53-kDa chitin-binding peptide and chitinase and perhaps the 150-kDa peptide, mediate the specific attachment of V. harveyi to chitin.  相似文献   

18.
Membrane preparations of Artemia salina synthetize radiolabelled chitin from UDP-[U-14C]GlcNAc at a low rate (Horst, M.N. (1981) J. Biol. Chem. 256, 1412-1419). We now report that, when the specific endochitinase inhibitor allosamidin is present in addition to the established activators trypsin and GlcNAc, incorporation of [U-14C]GlcNAc into chitin is increased up to 58-fold over the basic synthesis rate. Thus, a greatly enhanced apparent chitin synthase activity is observed in membranes from an arthropod species when simultaneous degradation of chitin is inhibited.  相似文献   

19.
Einbu A  Vårum KM 《Biomacromolecules》2008,9(7):1870-1875
Proton NMR spectra of chitin dissolved in concentrated and deuterated hydrochloric acid (DCl) were found to be a simple and powerful method for identifying chitin from samples of biological origin. During the first hour after dissolving chitin in concentrated DCl (25 degrees C), insignificant de-N-acetylation occurred, meaning that the fraction of acetylated units (FA) of chitin could be determined. FA of demineralized shrimp shell samples treated with 1 M NaOH at 95 degrees C for 1-24 h were determined and were found to decrease linearly with time from 0.96 to 0.91 during the treatment with NaOH. Extrapolation to zero time suggested that chitin from shrimp shells has a FA of 0.96, that is, contains a small but significant fraction of de-N-acetylated units. Proton NMR spectra of chitin ( FA = 0.96) dissolved in concentrated DCl were obtained as a function of time until the samples were almost quantitatively hydrolyzed to the monomer glucosamine (GlcN). The initial phase of the reaction involves mainly depolymerization of the chitin chains, resulting in that almost 90% (molar fraction) of the chitin is converted to the monomer N-acetyl-glucosamine (GlcNAc).Thus, effective conversion of chitin to GlcNAc in concentrated acid is reported for the first time. GlcNAc is then further de-N-acetylated to GlcN. A new theoretical model was developed to simulate the experimental data of the kinetics of hydrolysis of chitin in concentrated acid. The model uses three different rate constants; two for the hydrolysis of the glycosidic linkages following an N-acetylated or a de-N-acetylated sugar unit and one for the de-N-acetylation reaction. The three rate constants were estimated by fitting model data to experimental results. The rate of hydrolysis of a glycosidic linkage following an N-acetylated unit was found to be 54 times higher as compared to the rate of de-N-acetylation and 115 times higher than the rate of hydrolysis of a glycosidic linkage following a de-N-acetylated unit. Two chitin samples with different F A values (0.96 and 0.70) were incubated in concentrated DCl until the samples were converted to the maximum yield of GlcNAc and the oligomer composition analyzed, showing that the maximum yield of GlcNAc was much higher when prepared from the chitin with the highest F A value.  相似文献   

20.
Chitin, a homopolymer of β1,4-linked N-acetylglucosamine (GlcNAc) residues, is a key component of the cell walls of fungi and the exoskeletons of arthropods. Chitin synthases transfer GlcNAc from UDP-GlcNAc to preexisting chitin chains in reactions that are typically stimulated by free GlcNAc. The effect of GlcNAc was probed by using a yeast strain expressing a single chitin synthase, Chs2, by examining formation of chitin oligosaccharides (COs) and insoluble chitin, and by replacing GlcNAc with 2-acylamido analogues of GlcNAc. Synthesis of COs was strongly dependent on inclusion of GlcNAc in chitin synthase incubations, and N,N′-diacetylchitobiose (GlcNAc2) was the major reaction product. Formation of both COs and insoluble chitin was also stimulated by GlcNAc2 and by N-propanoyl-, N-butanoyl-, and N-glycolylglucosamine. MALDI analyses of the COs made in the presence of 2-acylamido analogues of GlcNAc showed they that contained a single GlcNAc analogue and one or more additional GlcNAc residues. These results indicate that Chs2 can use certain 2-acylamido analogues of GlcNAc, and likely free GlcNAc and GlcNAc2 as well, as GlcNAc acceptors in a UDP-GlcNAc-dependent glycosyltransfer reaction. Further, formation of modified disaccharides indicates that CSs can transfer single GlcNAc residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号