首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positive plant diversity–productivity relationships are known to be driven by complementary resource use via differences in plant functional traits. Moreover, soil properties related to nutrient availability were shown to change with plant diversity over time; however, it is not well‐understood whether and how such plant diversity‐dependent soil changes and associated changes in functional traits contribute to positive diversity–productivity relationships in the long run. To test this, we investigated plant communities of different species richness (1, 2, 6, and 9 species) in a 15‐year‐old grassland biodiversity experiment. We determined community biomass production and biodiversity effects (net biodiversity [NEs], complementarity [CEs], and selection effects [SEs]), as well as community means of plant functional traits and soil properties. First, we tested how these variables changed along the plant diversity gradient and were related to each other. Then, we tested for direct and indirect effects of plant and soil variables influencing community biomass production and biodiversity effects. Community biomass production, NEs, CEs, SEs, plant height, root length density (RLD), and all soil property variables changed with plant diversity and the presence of the dominant grass species Arrhenatherum elatius (increase except for soil pH, which decreased). Plant height and RLD for plant functional traits, and soil pH and organic carbon concentration for soil properties, were the variables with the strongest influence on biomass production and biodiversity effects. Our results suggest that plant species richness and the presence of the dominant species, A. elatius, cause soil organic carbon to increase and soil pH to decrease over time, which increases nutrient availability favoring species with tall growth and dense root systems, resulting in higher biomass production in species‐rich communities. Here, we present an additional process that contributes to the strengthening positive diversity–productivity relationship, which may play a role alongside the widespread plant functional trait‐based explanation.  相似文献   

2.
Plant‐soil feedbacks (PSFs) have been shown to strongly affect plant performance under controlled conditions, and PSFs are thought to have far reaching consequences for plant population dynamics and the structuring of plant communities. However, thus far the relationship between PSF and plant species abundance in the field is not consistent. Here, we synthesize PSF experiments from tropical forests to semiarid grasslands, and test for a positive relationship between plant abundance in the field and PSFs estimated from controlled bioassays. We meta‐analyzed results from 22 PSF experiments and found an overall positive correlation (0.12 ≤ r¯ ≤ 0.32) between plant abundance in the field and PSFs across plant functional types (herbaceous and woody plants) but also variation by plant functional type. Thus, our analysis provides quantitative support that plant abundance has a general albeit weak positive relationship with PSFs across ecosystems. Overall, our results suggest that harmful soil biota tend to accumulate around and disproportionately impact species that are rare. However, data for the herbaceous species, which are most common in the literature, had no significant abundance‐PSFs relationship. Therefore, we conclude that further work is needed within and across biomes, succession stages and plant types, both under controlled and field conditions, while separating PSF effects from other drivers (e.g., herbivory, competition, disturbance) of plant abundance to tease apart the role of soil biota in causing patterns of plant rarity versus commonness.  相似文献   

3.
The relationship between ecological variation and microbial genetic composition is critical to understanding microbial influence on community and ecosystem function. In glasshouse trials using nine native legume species and 40 rhizobial strains, we find that bacterial rRNA phylotype accounts for 68% of amoung isolate variability in symbiotic effectiveness and 79% of host specificity in growth response. We also find that rhizobial phylotype diversity and composition of soils collected from a geographical breadth of sites explains the growth responses of two acacia species. Positive soil microbial feedback between the two acacia hosts was largely driven by changes in diversity of rhizobia. Greater rhizobial diversity accumulated in association with the less responsive host species, Acacia salicina, and negatively affected the growth of the more responsive Acacia stenophylla. Together, this work demonstrates correspondence of phylotype with microbial function, and demonstrates that the dynamics of rhizobia on host species can feed back on plant population performance.  相似文献   

4.
Endozoochory, a mutualistic interaction between plants and frugivores, is one of the key processes responsible for maintenance of tropical biodiversity. Islands, which have a smaller subset of plants and frugivores when compared with mainland communities, offer an interesting setting to understand the organization of plant–frugivore communities vis‐a‐vis the mainland sites. We examined the relative influence of functional traits and phylogenetic relationships on the plant–seed disperser interactions on an island and a mainland site. The island site allowed us to investigate the organization of the plant–seed disperser community in the natural absence of key frugivore groups (bulbuls and barbets) of Asian tropics. The endemic Narcondam Hornbill was the most abundant frugivore on the island and played a central role in the community. Species strength of frugivores (a measure of relevance of frugivores for plants) was positively associated with their abundance. Among plants, figs had the highest species strength and played a central role in the community. Island‐mainland comparison revealed that the island plant–seed disperser community was more asymmetric, connected, and nested as compared to the mainland community. Neither phylogenetic relationships nor functional traits (after controlling for phylogenetic relationships) were able to explain the patterns of interactions between plants and frugivores on the island or the mainland pointing toward the diffused nature of plant–frugivore interactions. The diffused nature is a likely consequence of plasticity in foraging behavior and trait convergence that contribute to governing the interactions between plants and frugivores. This is one of the few studies to compare the plant–seed disperser communities between a tropical island and mainland and demonstrates key role played by a point‐endemic frugivore in seed dispersal on island.  相似文献   

5.
Interspecific interactions between plants influence plant phenotype, distribution, abundance, and community structure. Each of these can, in turn, impact sediment biogeochemistry. Although the population and community level impacts of these interactions have been extensively studied, less is known about their effect on sediment biogeochemistry. This is surprising given that many plants are categorized as foundation species that exert strong control on community structure. In southern California salt marshes, we used clipping experiments to manipulate aboveground neighbor presence to study interactions between two dominant plants, Pacific cordgrass (Spartina foliosa) and perennial pickleweed (Sarcocornia pacifica). We also measured how changes in cordgrass stem density influenced sediment biogeochemistry. Pickleweed suppressed cordgrass stem density but had no effect on aboveground biomass. For every cordgrass stem lost per square meter, porewater ammonium increased 0.3–1.0 µM. Thus, aboveground competition with pickleweed weakened the effects of cordgrass on sediment biogeochemistry. Predictions about plant–soil feedbacks, especially under future climate scenarios, will be improved when plant–plant interactions are considered, particularly those containing dominant and foundation species.  相似文献   

6.
Understanding the mechanisms of community coexistence and ecosystem functioning may help to counteract the current biodiversity loss and its potentially harmful consequences. In recent years, plant–soil feedback that can, for example, be caused by below‐ground microorganisms has been suggested to play a role in maintaining plant coexistence and to be a potential driver of the positive relationship between plant diversity and ecosystem functioning. Most of the studies addressing these topics have focused on the species level. However, in addition to interspecific interactions, intraspecific interactions might be important for the structure of natural communities. Here, we examine intraspecific coexistence and intraspecific diversity effects using 10 natural accessions of the model species Arabidopsis thaliana (L.) Heynh. We assessed morphological intraspecific diversity by measuring several above‐ and below‐ground traits. We performed a plant–soil feedback experiment that was based on these trait differences between the accessions in order to determine whether A. thaliana experiences feedback at intraspecific level as a result of trait differences. We also experimentally tested the diversity–productivity relationship at intraspecific level. We found strong differences in above‐ and below‐ground traits between the A. thaliana accessions. Overall, plant–soil feedback occurred at intraspecific level. However, accessions differed in the direction and strength of this feedback: Some accessions grew better on their own soils, some on soils from other accessions. Furthermore, we found positive diversity effects within A. thaliana: Accession mixtures produced a higher total above‐ground biomass than accession monocultures. Differences between accessions in their feedback response could not be explained by morphological traits. Therefore, we suggest that they might have been caused by accession‐specific accumulated soil communities, by root exudates, or by accession‐specific resource use based on genetic differences that are not expressed in morphological traits. Synthesis. Our results provide some of the first evidence for intraspecific plant–soil feedback and intraspecific overyielding. These findings may have wider implications for the maintenance of variation within species and the importance of this variation for ecosystem functioning. Our results highlight the need for an increased focus on intraspecific processes in plant diversity research to fully understand the mechanisms of coexistence and ecosystem functioning.  相似文献   

7.
8.
  1. Exotic plant species can evolve adaptations to environmental conditions in the exotic range. Furthermore, soil biota can foster exotic spread in the absence of negative soil pathogen–plant interactions or because of increased positive soil biota–plant feedbacks in the exotic range. Little is known, however, about the evolutionary dimension of plant–soil biota interactions when comparing native and introduced ranges.
  2. To assess the role of soil microbes for rapid evolution in plant invasion, we subjected Verbascum thapsus, a species native to Europe, to a reciprocal transplant experiment with soil and seed material originating from Germany (native) and New Zealand (exotic). Soil samples were treated with biocides to distinguish between effects of soil fungi and bacteria. Seedlings from each of five native and exotic populations were transplanted into soil biota communities originating from all populations and subjected to treatments of soil biota reduction: application of (a) fungicide, (b) biocide, (c) a combination of the two, and (d) control.
  3. For most of the investigated traits, native populations showed higher performance than exotic populations; there was no effect of soil biota origin. However, plants developed longer leaves and larger rosettes when treated with their respective home soil communities, indicating that native and exotic plant populations differed in their interaction with soil biota origin. The absence of fungi and bacteria resulted in a higher specific root length, suggesting that V. thapsus may compensate the absence of mutualistic microbes by increasing its root–soil surface contact.
  4. Synthesis. Introduced plants can evolve adaptations to soil biota in their new distribution range. This demonstrates the importance of biogeographic differences in plant–soil biota relationships and suggests that future studies addressing evolutionary divergence should account for differential effects of soil biota from the home and exotic range on native and exotic populations of successful plant invaders.
  相似文献   

9.
Plant–plant interactions change through succession from facilitative to competitive. At early stages of succession, early‐colonizing plants can increase the survival and reproductive output of other plants by ameliorating disturbance and stressful conditions. At later stages of succession, plant interactions are more competitive as plants put more energy toward growth and reproduction. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) and bryophyte succession. How bryophyte‐tree seedling interactions vary through log succession remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 1.0 m2 plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA, to test the hypothesis that bryophyte‐tree seedling interactions change from facilitative to competitive as the log decays. Tree seedling density was highest on young logs with early‐colonizing bryophyte species (e.g., Rhizomnium glabrescens) and lowest on decayed logs with Hylocomium splendens, a long‐lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6× higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by forest floor plants, such as H. splendens. Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs enable both tree seedlings and smaller bryophyte species to avoid competition with forest floor plants, including the dominant bryophyte, H. splendens. H. splendens is likely a widespread driver of plant community structure given its dominance in northern temperate forests. Our findings indicate that plant–plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.  相似文献   

10.
Loss of plant biodiversity can result in reduced abundance and diversity of associated species with implications for ecosystem functioning. In ecosystems low in plant species diversity, such as Neotropical mangrove forests, it is thought that genetic diversity within the dominant plant species could play an important role in shaping associated communities. Here, we used a manipulative field experiment to study the effects of maternal genotypic identity and genetic diversity of the red mangrove Rhizophora mangle on the composition and richness of associated soil bacterial communities. Using terminal restriction fragment length polymorphism (T‐RFLP) community fingerprinting, we found that bacterial community composition differed among R. mangle maternal genotypes but not with genetic diversity. Bacterial taxa richness, total soil nitrogen, and total soil carbon were not significantly affected by maternal genotypic identity or genetic diversity of R. mangle. Our findings show that genotype selection in reforestation projects could influence soil bacterial community composition. Further research is needed to determine what impact these bacterial community differences might have on ecosystem processes, such as carbon and nitrogen cycling.  相似文献   

11.
While the effect of drought on plant communities and their associated ecosystem functions is well studied, little research has considered how responses are modified by soil depth and depth heterogeneity. We conducted a mesocosm study comprising shallow and deep soils, and variable and uniform soil depths, and two levels of plant community composition, and exposed them to a simulated drought to test for interactive effects of these treatments on the resilience of carbon dioxide fluxes, plant functional traits, and soil chemical properties. We tested the hypotheses that: (a) shallow and variable depth soils lead to increased resistance and resilience of ecosystem functions to drought due to more exploitative plant trait strategies; (b) plant communities associated with intensively managed high fertility soils, will have more exploitative root traits than extensively managed, lower fertility plant communities. These traits will be associated with higher resistance and resilience to drought and may interact with soil depth and depth heterogeneity to amplify the effects on ecosystem functions. Our results showed that while there were strong soil depth/heterogeneity effects on plant‐driven carbon fluxes, it did not affect resistance or resilience to drought, and there were no treatment effects on plant‐available carbon or nitrogen. We did observe a significant increase in exploitative root traits in shallow and variable soils relative to deep and uniform, which may have resulted in a compensation effect which led to the similar drought responses. Plant community compositions representative of intensive management were more drought resilient than more diverse “extensive” communities irrespective of soil depth or soil depth heterogeneity. In intensively managed plant communities, root traits were more representative of exploitative strategies. Taken together, our results suggest that reorganization of root traits in response to soil depth could buffer drought effects on ecosystem functions.  相似文献   

12.
Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta‐analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non‐significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE‐related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.  相似文献   

13.
14.
Human has used plants to treat many civilisation diseases for thousands of years. Examples include reserpine (hypertension therapy), digoxin (myocardial diseases), vinblastine and vincristine (cancers), and opioids (palliative treatment). Plants are a rich source of natural metabolites with multiple biological activities, and the use of modern approaches and tools allowed finally for more effective bioprospecting. The new phytochemicals are hyaluronidase (Hyal) inhibitors, which could serve as anti-cancer drugs, male contraceptives, and an antidote against venoms. In turn, tyrosinase inhibitors can be used in cosmetics/pharmaceuticals as whitening agents and to treat skin pigmentation disorders. However, the activity of these inhibitors is stricte dependent on their structure and the presence of the chemical groups, e.g. carbonyl or hydroxyl. This review aims to provide comprehensive and in-depth evidence related to the anti-tyrosinase and anti-Hyal activity of phytochemicals as well as confirming their efficiency and future perspectives.  相似文献   

15.
Aim In contrast to non‐forest vegetation, the species richness–productivity (SR‐P) relationship in forests still remains insufficiently explored. Several studies have focused on the diversity of the tree layer, but the species richness of temperate deciduous forests is mainly determined by their species‐rich herb layer. The factors controlling herb‐layer productivity may differ from those affecting tree layers or open herbaceous vegetation, and thus the SR‐P relationship and its underlying processes may differ. However, the few relevant studies have reported controversial results. Here we explore the SR‐P relationship in the forest herb layer across different areas from oceanic to continental Europe, and put the effect of habitat productivity on species richness into context with other key factors, namely soil pH and light availability. Location North‐western Germany, Czech Republic, Slovakia and southern Urals (Russia). Methods We measured herb‐layer species richness and biomass, soil pH and tree‐layer cover in 156 vegetation plots of 100 m2 in deciduous forests. We analysed the SR‐P relationship and the relative importance of environmental variables using regression models for particular areas and separate forest types. Results We found a consistent monotonic increase in the herb‐layer species richness with productivity across all study areas and all forest types. Soil pH and light availability also affected species richness, but their relative importance differed among areas. Main conclusions We suggest that the monotonically increasing SR‐P relationship in the forest herb layer results from the fact that herb‐layer productivity is limited by canopy shading; competition within the herb layer is therefore not strong enough to exclude many species. This differs fundamentally from open herbaceous vegetation, which is not subject to such productivity limits and consequently exhibits a unimodal SR‐P relationship. We present a conceptual model that might explain the differences in the SR‐P relationship between the forest herb layer and open herbaceous vegetation.  相似文献   

16.
Host nutrient supply can mediate host–pathogen and pathogen–pathogen interactions. In terrestrial systems, plant nutrient supply is mediated by soil microbes, suggesting a potential role of soil microbes in plant diseases beyond soil‐borne pathogens and induced plant defenses. Long‐term nitrogen (N) enrichment can shift pathogenic and nonpathogenic soil microbial community composition and function, but it is unclear if these shifts affect plant–pathogen and pathogen–pathogen interactions. In a growth chamber experiment, we tested the effect of long‐term N enrichment on infection by Barley Yellow Dwarf Virus (BYDV‐PAV) and Cereal Yellow Dwarf Virus (CYDV‐RPV), aphid‐vectored RNA viruses, in a grass host. We inoculated sterilized growing medium with soil collected from a long‐term N enrichment experiment (ambient, low, and high N soil treatments) to isolate effects mediated by the soil microbial community. We crossed soil treatments with a N supply treatment (low, high) and virus inoculation treatment (mock‐, singly‐, and co‐inoculated) to evaluate the effects of long‐term N enrichment on plant–pathogen and pathogen–pathogen interactions, as mediated by N availability. We measured the proportion of plants infected (i.e., incidence), plant biomass, and leaf chlorophyll content. BYDV‐PAV incidence (0.96) declined with low N soil (to 0.46), high N supply (to 0.61), and co‐inoculation (to 0.32). Low N soil mediated the effect of N supply on BYDV‐PAV: instead of N supply reducing BYDV‐PAV incidence, the incidence increased. Additionally, ambient and low N soil ameliorated the negative effect of co‐inoculation on BYDV‐PAV incidence. BYDV‐PAV infection only reduced chlorophyll when plants were grown with low N supply and ambient N soil. There were no significant effects of long‐term N soil on CYDV‐RPV incidence. Soil inoculant with different levels of long‐term N enrichment had different effects on host–pathogen and pathogen–pathogen interactions, suggesting that shifts in soil microbial communities with long‐term N enrichment may mediate disease dynamics.  相似文献   

17.
  1. In species providing extended parental care, one or both parents care for altricial young over a period including more than one breeding season. We expect large parental investment and long‐term dependency within family units to cause high variability in life trajectories among individuals with complex consequences at the population level. So far, models for estimating demographic parameters in free‐ranging animal populations mostly ignore extended parental care, thereby limiting our understanding of its consequences on parents and offspring life histories.
  2. We designed a capture–recapture multievent model for studying the demography of species providing extended parental care. It handles statistical multiple‐year dependency among individual demographic parameters grouped within family units, variable litter size, and uncertainty on the timing at offspring independence. It allows for the evaluation of trade‐offs among demographic parameters, the influence of past reproductive history on the caring parent''s survival status, breeding probability, and litter size probability, while accounting for imperfect detection of family units. We assess the model performance using simulated data and illustrate its use with a long‐term dataset collected on the Svalbard polar bears (Ursus maritimus).
  3. Our model performed well in terms of bias and mean square error and in estimating demographic parameters in all simulated scenarios, both when offspring departure probability from the family unit occurred at a constant rate or varied during the field season depending on the date of capture. For the polar bear case study, we provide estimates of adult and dependent offspring survival rates, breeding probability, and litter size probability. Results showed that the outcome of the previous reproduction influenced breeding probability.
  4. Overall, our results show the importance of accounting for i) the multiple‐year statistical dependency within family units, ii) uncertainty on the timing at offspring independence, and iii) past reproductive history of the caring parent. If ignored, estimates obtained for breeding probability, litter size, and survival can be biased. This is of interest in terms of conservation because species providing extended parental care are often long‐living mammals vulnerable or threatened with extinction.
  相似文献   

18.
  1. Almost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life‐history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life‐history stages. The few previously proposed methods do not take full advantage of the existing food web structural models that can produce realistic food web topologies.
  2. We extended the niche model developed by Williams and Martinez (Nature, 2000, 404, 180–183) to generate food webs that included trophic species with a life‐history stage structure. Our method aggregated trophic species based on niche overlap to form a life‐history structured population; therefore, it largely preserved the topological structure of food webs generated by the niche model. We applied the theory of allometric predator–prey body mass ratio and parameterized an allometric bioenergetic model augmented with biomass flow between stages via growth and reproduction to study the effects of a stage structure on the stability of food webs.
  3. When life‐history stages were linked via growth and reproduction, more food webs persisted, and persisting food webs tended to retain more trophic species. Topological differences between persisting linked and unlinked food webs were small to modest. The slopes of biomass spectra were lower, and weak interaction links were more prevalent in the linked food webs than the unlinked ones, suggesting that a life‐history stage structure promotes characteristics that can enhance stability of complex food webs.
  4. Our results suggest a positive relationship between the complexity and stability of complex food webs. A life‐history stage structure in food webs may play important roles in dynamics of and diversity in food webs.
  相似文献   

19.
  1. Forest canopies play a crucial role in structuring communities of vascular epiphytes by providing substrate for colonization, by locally varying microclimate, and by causing epiphyte mortality due to branch or tree fall. However, as field studies in the three‐dimensional habitat of epiphytes are generally challenging, our understanding of how forest structure and dynamics influence the structure and dynamics of epiphyte communities is scarce.
  2. Mechanistic models can improve our understanding of epiphyte community dynamics. We present such a model that couples dispersal, growth, and mortality of individual epiphytes with substrate dynamics, obtained from a three‐dimensional functional–structural forest model, allowing the study of forest–epiphyte interactions. After validating the epiphyte model with independent field data, we performed several theoretical simulation experiments to assess how (a) differences in natural forest dynamics, (b) selective logging, and (c) forest fragmentation could influence the long‐term dynamics of epiphyte communities.
  3. The proportion of arboreal substrate occupied by epiphytes (i.e., saturation level) was tightly linked with forest dynamics and increased with decreasing forest turnover rates. While species richness was, in general, negatively correlated with forest turnover rates, low species numbers in forests with very‐low‐turnover rates were due to competitive exclusion when epiphyte communities became saturated. Logging had a negative impact on epiphyte communities, potentially leading to a near‐complete extirpation of epiphytes when the simulated target diameters fell below a threshold. Fragment size had no effect on epiphyte abundance and saturation level but correlated positively with species numbers.
  4. Synthesis: The presented model is a first step toward studying the dynamic forest–epiphyte interactions in an agent‐based modeling framework. Our study suggests forest dynamics as key factor in controlling epiphyte communities. Thus, both natural and human‐induced changes in forest dynamics, for example, increased mortality rates or the loss of large trees, pose challenges for epiphyte conservation.
  相似文献   

20.
Earthworms and plants greatly affect belowground properties; however, their combined effects are more attractive based on the ecosystem scale in the field condition. To address this point, we manipulated earthworms (exotic endogeic species Pontoscolex corethrurus) and plants (living plants [native tree species Evodia lepta] and artificial plants) to investigate their combined effects on soil microorganisms, soil nutrients, and soil respiration in a subtropical forest. The manipulation of artificial plants aimed to simulate the physical effects of plants (e.g., shading and interception of water) such that the biological effects of plants could be evaluated separately. We found that relative to the controls, living plants but not artificial plants significantly increased the ratio of fungal to bacterial phospholipid fatty acids (PLFAs) and fungal PLFAs. Furthermore, earthworms plus living plants significantly increased the soil respiration and decreased the soil NH4+‐N, which indicates that the earthworm effects on the associated carbon, and nitrogen processes were greatly affected by living plants. The permutational multivariate analysis of variance results also indicated that living plants but not earthworms or artificial plants significantly changed the soil microbial community. Our results suggest that the effects of plants on soil microbes and associated soil properties in this study were largely explained by their biological rather than their physical effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号