首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell motility is regulated by extracellular cues and by intracellular factors that accumulate at sites of contact between cells and the extracellular matrix. One of these factors, focal adhesion kinase (FAK), regulates the cycle of focal adhesion formation and disassembly that is required for cell movement to occur. Recently, Wnt signaling has also been implicated in the control of cell movement in vertebrates, but the mechanism through which Wnt proteins influence motility is unclear. We demonstrate that Drosphila Wnt4 is required for cell movement and FAK regulation during ovarian morphogenesis. Dfrizzled2, Disheveled, and protein kinase C are also required. The DWnt4 cell motility pathway is distinct from both the canonical Wnt pathway and the planar polarity pathway. Our data suggest that DWnt4 facilitates motility through regulation of focal adhesions.  相似文献   

2.
Dental follicle cells (DFCs) are ideal for studies concerning the differentiation of dental precursor cells into alveolar osteoblasts and cementoblasts. Previous investigations have suggested that the extracellular matrix (ECM) protein laminin and the ECM receptor integrin-α2/-β1 play regulatory roles during the osteogenic differentiation of DFCs. Our present data indicate that laminin impairs alkaline phosphatase (ALP) activity following osteogenic induction while inducing integrin-α2/-β1 expression, osteogenic differentiation marker elevation, and DFC biomineralization. Integrin-α2/-β1 facilitates the laminin-dependent expression of osteogenic differentiation markers and the laminin-dependent inhibition of ALP activity. Moreover, these laminin-dependent effects on the osteogenic differentiation of DFCs can be reversed by the inhibition of the FAK/ERK signaling pathway. Thus, laminin regulates the inhibition of early osteogenic differentiation markers and the induction of late osteogenic differentiation markers via integrin-α2/-β1 and the activation of the FAK/ERK signaling pathway.  相似文献   

3.
The nonreceptor tyrosine kinase c-Src is activated in most invasive cancers. Activated c-Src binds to FAK in the focal adhesion complex, resulting in the activation of the c-Src/FAK signaling cascade, which regulates cytoskeletal functions. However, the mechanisms by which c-Src/FAK signaling is regulated during conditions of anchorage-independent growth, a hallmark of tumor progression, are not clearly known. Here, an in vivo approach to measure c-Src activity was studied using phospho-specific antibodies against phosphorylated Y418 of c-Src (Src[pY418]), an autophosphorylation site of c-Src, and phosphorylated Y577 of FAK (FAK[pY577]), a known substrate of c-Src. Using genetic and pharmacological approaches to modulate c-Src activity, we showed that the levels of Src[pY418] and FAK[pY577], and the formation of a c-Src/FAK[pY577] complex correlated with the activation state of c-Src in adherent cells. Interestingly, both the in vivo level of Src[pY418] and in vitro c-Src kinase activity were increased in carcinoma cells following disruption of Ca(2+)-dependent cell-matrix adhesion. In contrast, the level of FAK[pY577] and its association with c-Src were reduced in suspended cells. The amount of FAK[pY577] in suspended cells was recovered following attachment of rounded cells to fibronectin-coated polystyrene beads, indicating that cell spreading was not required for phosphorylation of FAK. Moreover, cells expressing activated c-Src showed sustained Src[Y418] phosphorylation, but required Ca(2+)-dependent cell adhesion for phosphorylation of FAK[Y577] and association of c-Src with FAK[pY577]. These findings indicate an important role of integrin-based cell-matrix adhesion in regulating c-Src/FAK signaling under decreased anchorage conditions.  相似文献   

4.
5.
6.
The focal adhesion kinase (FAK) is a mediator of cell-extracellular matrix signaling events and is overexpressed in tumor cells. In order to rapidly down-regulate FAK function in normal and transformed mammary cells, we have used adenoviral gene transduction of the carboxyl-terminal domain of FAK (FAK-CD). Transduction of adenovirus containing FAK-CD in breast cancer cells caused loss of adhesion, degradation of p125(FAK), and induced apoptosis. Furthermore, breast tumor cells that were viable without matrix attachment also underwent apoptosis upon interruption of FAK function, demonstrating that FAK is a survival signal in breast tumor cells even in the absence of matrix signaling. In addition, both anchorage-dependent and anchorage-independent apoptotic signaling required Fas-associated death domain and caspase-8, suggesting that a death receptor-mediated apoptotic pathway is involved. Finally, FAK-CD had no effect on adhesion or viability in normal mammary cells, despite the loss of tyrosine phosphorylation of p125(FAK). These results indicate that FAK-mediated signaling is required for both cell adhesion and anchorage-independent survival and the disruption of FAK function involves the Fas-associated death domain and caspase-8 apoptotic pathway.  相似文献   

7.
We have recently identified a specific signaling pathway that regulates actin reorganization in malignant human breast and prostate epithelial cells associated with FAK, PI-3K and Rac1 activation. Here we report that this pathway operates in MCF7 cells upon activation of membrane androgen receptors (mAR). Stimulation of mAR by the non-permeable testosterone-BSA conjugate resulted in early actin reorganization documented by quantitative measurements of actin dynamics and morphological analysis of microfilament organization. This effect was regulated by early phosphorylation of FAK and subsequent PI-3K and Rac1 activation. The functional role of this pathway was further shown in A375 melanoma cells. Treatment with the opioid antagonist alpha(s1) casomorphin resulted in rapid and potent actin remodeling in A375 cells, regulated by rapid activation of the FAK/PI-3K/Rac1 signaling. Pretreatment of both cell lines with the specific PI-3K inhibitor wortmannin blocked actin reorganization. Interestingly, wound healing assays revealed that testosterone-BSA and alpha (s1) casomorphin significantly inhibited MCF7 and A375 cell motility respectively. These effects were abrogated through blockade of PI-3K signaling by wortmannin. The results presented here indicate that actin reorganization through FAK/PI3-K/Rac-1 activation operates in various human cancer cell systems supporting a functional role for FAK/PI-3K/Rac1/actin signaling in controlling cell motility.  相似文献   

8.
Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.  相似文献   

9.
Overexpression of focal adhesion kinase (FAK) has been well correlated with tumor development and/or the maintenance of tumor phenotype. In addition, inappropriate activation of the extracellular regulated kinase (ERK) signaling pathway is common to many human cancers. In the present study, we investigated the interplay between FAK and ERK in androgen-independent prostate cancer cells (PC3 and DU145 cells). We observed that suppression of FAK expression using small interfering RNA-mediated knockdown decreased the clonogenic activity, whereas overexpression of FAK increased it. We also observed that detachment of PC3 and DU145 cells from their substrate induced tyrosine phosphorylation of FAK. ERK knockdown diminished FAK protein levels and tyrosine phosphorylation of FAK as well as FAK promoter-reporter activity. We also tested the effect of MEK inhibitors and small interfering RNA-mediated knockdown of ERK1 and/or ERK2 on cell proliferation, invasiveness, and growth in soft agar of PC3 and DU145 cells. Inhibition of ERK signaling grossly impaired clonogenicity as well as invasion through Matrigel. However, inhibition of ERK signaling resulted in only a modest inhibition of 3H-thymidine incorporation and no effect on overall viability of the cells or increased sensitivity to anoikis. Taken together, these data show, for the first time, a requirement for FAK in aggressive phenotype of prostate cancer cells; reveal interdependence of FAK and ERK1/2 for clonogenic and invasive activity of androgen-independent prostate cancer cells; suggest a role for ERK regulation of FAK in substrate-dependent survival; and show for the first time, in any cell type, the regulation of FAK expression by ERK signaling pathway.  相似文献   

10.
11.
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.  相似文献   

12.
Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis   总被引:3,自引:0,他引:3  
Perception of general elicitors by plant cells initiates signal transduction cascades that are regulated by protein phosphorylation. The earliest signaling events occur within minutes and include ion fluxes across the plasma membrane, activation of MAPKs, and the formation of reactive oxygen species. The phosphorylation events that regulate these signaling cascades are largely unknown. Here we present a mass spectrometry-based quantitative phosphoproteomics approach that identified differentially phosphorylated sites in signaling and response proteins from Arabidopsis cells treated with either flg22 or xylanase. Our approach was sensitive enough to quantitate phosphorylation on low abundance signaling proteins such as calcium-dependent protein kinases and receptor-like kinase family members. With this approach we identified one or more differentially phosphorylated sites in 76 membrane-associated proteins including a number of defense-related proteins. Our data on phosphorylation indicate a high degree of complexity at the level of post-translational modification as exemplified by the complex modification patterns of respiratory burst oxidase protein D. Furthermore the data also suggest that protein translocation and vesicle traffic are important aspects of early signaling and defense in response to general elicitors. Our study presents the largest quantitative Arabidopsis phosphoproteomics data set to date and provides a new resource that can be used to gain novel insight into plant defense signal transduction and early defense response.  相似文献   

13.
Multiple connections link FAK to cell motility and invasion   总被引:28,自引:0,他引:28  
The ability of intracellular signaling networks to orchestrate a complex biological response such as cell motility requires that individual signaling proteins must act as integrators, responding to multiple extracellular inputs and regulating multiple signaling pathway outputs. In this review, we highlight recent findings that place focal adhesion kinase (FAK) in an important receptor-proximal position in the regulation of growth factor and integrin-stimulated cell motility. Emphasis is placed on the molecular mechanisms of FAK activation, connections of FAK to focal contact formation as well as turnover, and the potential that FAK function in promoting cell invasion may be distinct from its role in cell motility.  相似文献   

14.
Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.  相似文献   

15.
16.
We previously demonstrated that α3β1 integrins are essential to hepatocyte growth factor (HGF)-independent branching tubulogenesis in Mardin-Darby Canine Kidney (MDCK) cells. However, the involvement of integrin downstream signaling molecules remains unclear. In the present study, we successfully isolated cell lines possessing different tubulogenic potentials from the MDCK cells; cyst clones (CA4, CA6) forming cystic structures when cultured in 0.3% type I collagen gel and mass clones (M610, M611, M612) forming aggregated masses. Cyst clones maintained cystic structure in 0.1% collagen gel, whereas mass clones spontaneously developed into tubules. Both clones exhibited various morphologies when cultured on a dish: cyst clones formed aggregated islands, while mass clones were more scattered and exhibited higher migration capacity. Among several focal adhesion machinery proteins examined, only the expression and phosphorylation level of focal adhesion kinase (FAK) in mass clones was higher than in cyst clones, while other proteins showed no obvious differences. However, overexpression of wild type FAK in CA6 cells did not facilitate branching tubule formation in 0.1% collagen gel. Targeted decrease in the expression level of FAK in M610 cells with the application of antisense cDNA resulted in a marked reduction of branching tubule formation in 0.1% collagen gel and showed a down-regulation of fibronectin assembly, which is known to promote tubulogenesis. In contrast, overexpression of wild type FAK in CA6 cells had no effect on fibronectin assembly. Taken together, our data demonstrates that FAK is required, but not sufficient for HGF-independent branching tubulogenesis in MDCK cells.  相似文献   

17.
目的研究上皮生长因子受体和FAK的相互作用以及对下游信号的影响。方法建立聚集粘连激酶(FAK)缺失突变和绿色荧光蛋白(GFP)融合基因del1-693FAK-GFP、del1-100FAK-GFP和FAK-GFP稳定表达细胞系。结果同野生型FAK-GFP相比,N-端1-100氨基酸残基的缺失突变体,缺失1-693氨基酸残基的突变体结合在黏附点的能力被完全抑制。应用等电聚焦和SDS-PAGE双向电泳证明,EGF和纤维连接蛋白诱导FAK磷酸化的位点不同,进一步证实del1-693FAK-GFP、del1-100FAK-GFP,抑制MAPK的磷酸化,增强Akt的磷酸化;而FAK-GFP增强MAPK磷酸化,抑制Akt磷酸化。结论FAK通过和EGFR的相互作用调节MAPK和Akt之间的相对平衡。  相似文献   

18.
Daher Z  Noël J  Claing A 《Cellular signalling》2008,20(12):2256-2265
Several proteins act in concert to promote remodeling of the actin cytoskeleton during migration. This process is highly regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family of proteins. Here, we show that endothelin-1 (ET-1) can promote the activation of ARF6 and migration of endothelial cells through the activation of ETB receptors. Inhibition of ARF6 expression using RNA interference markedly impairs basal and ET-1 stimulated cell migration. In contrast, depletion of ARF1 has no significant effect. In order to delineate the underlying mechanism, we examined the signaling events activated in endothelial cells following ET-1 stimulation. Here, we show that this hormone promotes the phosphorylation of focal adhesion kinase (FAK), Erk1/2, and the association of FAK to Src, as well as of FAK to GIT1. These have been shown to be important for the formation and turnover of focal adhesions. In non-stimulated cells, depletion of ARF6 leads to increased FAK and Erk1/2 phosphorylation, similar to what is observed in ET-1 treated cells. In these conditions, FAK is found constitutively associated with the soluble tyrosine kinase, Src. In contrast, depletion of ARF6 impairs the ability of GIT1 to form an agonist promoted complex with FAK, thereby preventing disassembly of focal adhesions. As a consequence, ARF6 depleted endothelial cells are impaired in their ability to form capillary tubes. Taken together, our data suggest that ARF6 is central in regulating focal adhesion turnover in endothelial cells. Our study provides a molecular mechanism by which, this small GTPase regulates cell motility, and ultimately angiogenesis.  相似文献   

19.
Reiske HR  Zhao J  Han DC  Cooper LA  Guan JL 《FEBS letters》2000,486(3):275-280
Focal adhesion kinase (FAK) is an important mediator of signal transduction pathways initiated by integrins in cell migration, survival and cell cycle regulation. The ability of FAK to mediate integrin signaling in the regulation of cell cycle progression depends on the phosphorylation of Tyr397, which implies a functional significance for the formation of FAK signaling complexes with Src, phosphatidylinositol-3-kinase (PI3K) and Grb7. We have previously described a FAK mutant, D395A, that selectively disrupts FAK binding to PI3K, but allows FAK association with Src. Using this mutation in a mislocalized FAK mutant background, we show here that formation of a FAK/PI3K complex is not sufficient for cell cycle progression but the formation of a FAK/Src complex plays an essential role. We also show that mutation of D395 to A disrupted FAK association with Grb7. This suggests that a FAK/Grb7 complex is not involved in the cell cycle regulation either, which is supported by direct analysis of cells expressing a dominant negative Grb7 construct. Finally, we provide evidence that the Src-dependent association of FAK with Grb2 and p130(Cas) are both required for the regulation of cell cycle progression by FAK. Together, these studies identify important FAK downstream signaling pathways in cell cycle regulation.  相似文献   

20.
Previously, we showed that cytoskeletal reorganization (CSR) induced by colchicine or cyochalasins leads to activation of the urokinase-type plasminogen activator (uPA) gene in LLC-PK(1) cells via the Ras/Erk signaling pathway [Irigoyen et al. (1997) J. Biol. Chem. 272, 1904]. It remained to be seen how CSR activates Ras/Erk signaling. Changes in cell morphology triggered by extracellular signals are often mediated by integrin-associated proteins, such as focal adhesion kinase (FAK) and Src. We found that CSR induced the activation of FAK and Src and the association of FAK and Shc, a signaling molecule linking growth factor receptor tyrosine kinase and Grb2. Furthermore, expression of either FRNK, a kinase-minus FAK-like molecule acting as a dominant negative FAK, or a dominant negative Src suppressed CSR-induced uPA gene promoter activation. These results suggest that cells respond to a morphology change, using the cytoskeleton as a sensor, by activating FAK and Src and subsequently the Ras/Erk signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号