首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The timing of the snowmelt is a crucial factor in determining the phenological schedule of alpine plants. A long-term monitoring of snowmelt regimes in a Japanese alpine area revealed that the onset of the snowmelt season has been accelerated during the last 17 years in early snowmelt sites but that such a trend has not been detected in late snowmelt sites. This indicates that the global warming effect on the snowmelt pattern may be site-specific. The flowering phenology of fellfield plants in an exposed wind-blown habitat was consistent between an unusually warm year (1998) and a normal year (2001). In contrast, the flowering occurrence of snowbed plants varied greatly between the years depending on the snowmelt time. There was a large number of flowering species in the fellfield community from mid- to late to late June and from mid- to late July. The flowering peak of an early-melt snowbed plant community was in the middle of the flowering season and that of a late-melt snowbed community was in the early flowering season. These habitat-specific phenological patterns were consistent between 1998 and 2001. The effects of the variation in flowering timing on seed-set success were evaluated for an entomophilous snowbed herb, Peucedanum multivittatum, along the snowmelt gradient during a 5-year period. When flowering occurred prior to early August, mean temperature during the flowering season positively influenced the seed set. When flowering occurred later than early August, however, the plants enjoyed high seed-set success irrespective of temperature conditions if frost damage was absent. These observations are probably explained based on the availability of pollinators, which depends not only on ambient temperature but also on seasonal progress. These results suggest that the effects of climate change on biological interaction may vary depending on the specific habitat in the alpine ecosystem in which diverse snowmelt patterns create complicated seasonality for plants within a very localized area.  相似文献   

2.
Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.  相似文献   

3.
Brazil has the third largest area of mangrove in the world, which is widely threatened by anthropogenic pressures. We carried out the first long-term phenological study investigating whether environment and competition for pollinators shape the reproduction of a western mangrove community in Brazil, and provide new information for mangrove conservation. We monitored monthly the flowering and fruiting of Avicennia schaueriana, Conocarpus erectus, Laguncularia racemosa and Rhizophora mangle, the only species composing this mangrove community. We applied circular statistics to detect seasonal trends, null models to test for aggregated, staggered or random flowering patterns, performed correlations between phenophases and climate, and calculated intra-specific phenological synchrony. Each species presented a different flowering pattern, from brief annual to continuous and from regular to irregular, resulting in a bimodal pattern at community level. Fruiting was annual or continuous and seasonally unimodal at community level. Precipitation showed the strongest correlation with reproduction for all species, except L. racemosa. Flowering was randomly distributed among species sharing pollinators and each species presented high intra-specific synchrony. The studied mangrove showed a diversity of flowering patterns despite the low number of species. Annual to sub-annual sequential flowering were prevalent, sustaining the pollinators of species all the year long, while the wind-pollinated species flowered continuously. We provide strong evidence that daylength, rainfall and temperature are driving the flowering and fruiting rhythm of these mangrove species.  相似文献   

4.
Flowering weeds, though often deemed undesirable in turfgrass lawns, provide food resources for declining pollinator populations in urbanized landscapes. We sampled bees and other pollinators directly from flowering common dandelion (Taraxacum officinale) and white clover (Trifolium repens) in lawns of similar character in central Kentucky USA to identify species likely to be exposed if such weeds are inadvertently oversprayed during application of lawn insecticides. We also tested the hypothesis that pollinator assemblages visiting spring-blooming white clover in urban and suburban lawns are as species-rich and diverse as in more rural lawn settings. We collected about 50 different species of insect pollinators, including 37 species of bees, from the aforementioned lawn weeds. Two of the six species of bumble bees (Bombus spp.) collected are considered uncommon and possibly in decline. Hover flies (Syrphidae), honey bees (Apis mellifera), and non-Apid wild bees predominated on dandelions whereas proportionately fewer hover flies and more A. mellifera and Bombus spp. visited white clover, especially in summer. Species richness of bees visiting white clover was similar in urban, suburban or periurban-rural lawns, although A. mellifera were proportionately more abundant, and Bombus spp. were less abundant, with increasing percentage of hardscape in surrounding areas. Fostering public awareness of the diversity of bees and other pollinators that visit flowering lawn weeds might help nurture a sociocultural shift toward more pollinator-friendly lawn care practices.  相似文献   

5.
Abstract Flower-visiting insects, the distribution of pollen on an insect's body, and fruit and seed sets of Primula sieboldiiE. Morren were investigated in a maritime deciduous forest habitat of the Hidaka region in Hokkaido. Queens of Bombus diversus tersatus Smith (Hymenoptera: Apidae), Bombus schrencki albidopleuralis Skorikov, and Bombus deuteronymus deuteronymus Schulz were observed to visit the flowers of the species. Bumblebee claw marks were found on the flower petals of 68% of the flowering ramets of the species. Scanning-electronmicroscopy revealed that pin and thrum pollens of P. sieboldii were deposited in different positions along the proboscis of a B. diversus tersatus queen (n=38400 grains). On the glossa, all the observed pollen was of the pin type, while more than half of the pollen grains observed on the upper part of the proboscis, galea, stipes, and maxillary palpus were of the thrum type. In the field, high fruit and seed sets were recorded for both pin and thrum morphs, indicating the occurrence of sufficient legitimate pollination during the flowering season. In addition to the effectiveness of queen bumblebees as pollinators for P. sieboldii suggested in this study, phenological and morphological matches, i.e., early spring flowering during the queen bee emergence season and the similar lengths of the corolla tube and the bee proboscis, also support the inference that queen bumble bees play an important role in legitimate pollination of P. sieboldii.  相似文献   

6.
The snow cover extent is an important factor for the structure and composition of arctic and alpine tundra communities. Over the last few decades, snowmelt in many arctic and alpine regions has advanced, causing the growing season to start earlier and last longer. In a field experiment in subarctic tundra in Interior Alaska, I manipulated the timing of snowmelt and measured the response in mortality, phenology, growth, and reproduction of the eight dominant plant species. I then tested whether the phenological development of these species was controlled by snowmelt date or by temperature (in particular growing degree days, GDD). In order to expand our understanding of plant sensitivity to snowmelt timing, I explored whether the response patterns can be generalized with regard to the temporal niche of each species. Differences in the phenology between treatments were only found for the first stages of the phenological development (=phenophases). The earlier the temporal niche (i.e., the sooner after snowmelt a species develops) the more its phenology was sensitive to snowmelt. Later phenophases were mostly controlled by GDD, especially in late-developing species. In no species did an earlier snowmelt and a longer growing season directly enhance plant fitness or fecundity, in spite of the changes in the timing of plant development. In conclusion, the temporal niche of a species’ phenological development could be a predictor of its response to snowmelt timing. However, only the first phenophases were susceptible to changes in snowmelt, and no short-term effects on plant fitness were found.  相似文献   

7.
Flowering phenology of alpine plants is strongly determined by the timing of snowmelt, and the conditions of pollination of widely distributed plants vary greatly during their flowering season. We examined the reproductive success of the distylous alpine herb, Primula modesta, along the snowmelt gradient under natural conditions, and compared it with the result of artificial pollination experiments. In addition, the compositions and visit frequencies of pollinators to the flower of P. modesta were examined during the flowering period. The pin and thrum plants of P. modesta growing at the same site have an equal ability to produce seeds if a sufficient amount of legitimate pollen grains are deposited on the stigma surface. However, under natural conditions, their seed‐set success was often (even if not always) restricted by pollen limitation, and the functional gender of the pin and thrum plants biased to the female and male, respectively, associated with their growing sites. These variations were not ascribed to resource limitation nor biased morph ratio but to the seasonal changes in pollination situations, a replacement of pollinator types from long‐ to short‐tongued pollinators resulted in unidirectional pollen transfer from long stamens (thrum plants) to long styles (pin plants). The functional gender specialization may enhance the evolution of dioecy from heterostyly, but the severe pollen limitation may cause the breakdown of heterostyly into homostyly. To consider the evolutionary pathway of heterostylous plants, an accumulation of the empirical data is required demonstrating how phenological synchrony between plants and pollinators is decided and to what degree this relationship is stable over years, along with estimates of selection and gene flow in individual plants.  相似文献   

8.
Sympatric populations of Pedicularis oederi, P. cystopteridifolia, and P. groenlandica on the Beartooth Plateau (Montana) were obligately dependent on Bombus pollinators. Their corolla colors were mutually distinct to insect vision, but their nectars had identical sugar components. Analysis of corbicular pollen loads of pollinating insects indicated a high degree of polylecty. Queen/worker ratios of pollinators on plant species corresponded to the parallel phenological sequences of plant blooming and insect caste development. The total number of individual pollinators of each Bombus species on all plants was directly related to the number of plant species it pollinated, but a comparable relationship between the number of pollinators on a plant species to the number of Bombus species pollinating it was not found. Morphological and behavioral correspondence of floral mechanisms and pollinators form an integral part of the general pattern of coadaptive evolution of the floral ecology of Pedicularis in North America known from previous studies. Reproductive isolation between Pedicularis species in this study is attributed to internal barriers. Wide overlaps of blooming seasons, proboscis lengths of bumblebee species and castes, and pollinator species on Pedicularis species suggest resource sharing, rather than resource partitioning or competition for resources among plant and insect species and individuals.  相似文献   

9.
《Animal behaviour》1987,35(6):1628-1636
Parasitical behaviour is thought to play an important, yet so far largely unknown role in the evolution and maintenance of insect sociality. In this study, the influence of interspecific, facultative social parasitism upon bumble bee, Bombus, nesting biology was explored. Queens of B. affinis were introduced into 38 various-sized laboratory colonies of B. terricola. Foreign queens were very successful at killing the resident queen and usurping pre-worker nests (77% wins), although usurpation success decreased to 30% in colonies that contained workers. In addition, B. affinis queens were unable to suppress ovarian development in B. terricola workers that emerged prior to nest usurpation, resulting in the eventual death or expulsion of the foreign queen. In contrast, ovarian development was supporessed in workers that eclosed in the presence of a foreign queen, and in workers that were less than 5 h old when confined in small experimental boxes with a B. affinis queen. Foreign queens that usurped a nest prior to worker emergence were assisted by B. terricola workers, and achieved similar reproductive success when compared to a cohort of 22 B. affinis queens that initiated their own nests in the laboratory. These results suggest that there are periods in the ontogeny of Bombus nest defence, recognition and dominance during which bees are sensitive to the effects of nest parasitism. In bumble bees, and in other social insects, individuals of some species may exploit these weaknesses for their own reproductive benefit.  相似文献   

10.
陈文年  吴彦  吴宁  罗鹏 《植物研究》2011,31(2):206-212
在青藏高原东部的一个高山雪床,沿着融雪梯度分别设置早融、中间和晚融3个融雪部位,然后测定川西小黄菊(Pyrethrum tatsienense)、长叶火绒草(Leontopodium longifolium)和圆穗蓼(Polygonum macrophyllum)在3个融雪部位上的物候差异以及种群分布格局的变化。结果表明:从早融到晚融的梯度上,3个物种的物候期都不同程度地有所推迟。其中,开始生长的时间推迟12~14 d,始花期推迟6~8 d,盛花期推迟6 d左右,但同一种植物在不同的融雪部位上的衰老枯黄期趋于一致,这标志着在晚融部位同一植物的生长期要缩短。在种群层次上,长叶火绒草和圆穗蓼的分布格局随着融雪的推迟都发生了一定的变化,基本上表现为从早融部位的集群分布到中间或晚融部位的随机分布。川西小黄菊在各个融雪部位上都表现为集群分布,但集群的强度随融雪的推迟逐渐减弱。  相似文献   

11.
Hirao AS  Kudo G 《Heredity》2004,93(3):290-298
The genetic structure of three snowbed-herb species (Peucedanum multivittatum, Veronica stelleri, and Gentiana nipponica) was analyzed using allozymes across nine populations arranged as a matrix of three snowmelt gradients x three geographic locations within 3 km in the Taisetsu Mountains, northern Japan. Phenologically asynchronous populations are packed within a local area in alpine snowbeds, because flowering season of alpine plants depends strongly on the timing of snowmelt. Moderate genetic differentiation was detected among local populations in every species (FST=0.03-0.07). There was a significant correlation between the geographic distance and genetic distance in the P. multivittatum populations, but not in the V. stelleri and G. nipponica populations. On the other hand, a significant correlation between the phenological distance caused by snowmelt timing and genetic distance was detected in the V. stelleri and G. nipponica populations, but not in the P. multivittatum populations. The snowmelt gradient or geographic separation influenced hierarchical genetic structure of these species moderately (FRT <0.04). Restriction of gene flow due to phenological separation and possible differential selection along the snowmelt gradient may produce genetic clines at microgeographic scale in these species.  相似文献   

12.
Climate change has the potential to alter the phenological synchrony between interacting mutualists, such as plants and their pollinators. However, high levels of biodiversity might buffer the negative effects of species‐specific phenological shifts and maintain synchrony at the community level, as predicted by the biodiversity insurance hypothesis. Here, we explore how biodiversity might enhance and stabilise phenological synchrony between a valuable crop, apple and its native pollinators. We combine 46 years of data on apple flowering phenology with historical records of bee pollinators over the same period. When the key apple pollinators are considered altogether, we found extensive synchrony between bee activity and apple peak bloom due to complementarity among bee species’ activity periods, and also a stable trend over time due to differential responses to warming climate among bee species. A simulation model confirms that high biodiversity levels can ensure plant–pollinator phenological synchrony and thus pollination function.  相似文献   

13.
? Premise of the study: Climate change has affected species worldwide, including alterations in phenology, migration patterns, distribution, and survival. Because Erythronium grandiflorum is an early-season bloomer, alterations in its phenology may have serious implications for many North American Rocky Mountain communities, including changes in resource availability for pollinators and herbivores. ? Methods: We investigated whether changes in the snowmelt date, summer temperature, and summer precipitation have altered the timing and abundance of flowering in E. grandiflorum by collecting long-term data on floral abundance from 1975-2008 in a series of 2 × 2 m plots at the Rocky Mountain Biological Laboratory (RMBL) in Gothic, Colorado in the United States. ? Key results: Snowmelt date and mean summer temperature were negatively correlated. Over the 30-yr study, the snowmelt date advanced by 4.14 d/decade, and mean summer temperature increased by 0.38°C/decade. Summer precipitation was variable, showing no change. The first, peak, and last flowering dates of E. grandiflorum advanced an average of 3.2 d/decade. Furthermore, earlier snowmelt and greater summer precipitation in the previous year led to earlier flowering in E. grandiflorum. There was no change in flowering abundance in this species, indicating it may be controlled by a complex set of abiotic and biotic variables. ? Conclusions: Our study indicates that snowmelt is arriving earlier at the RMBL, which has caused earlier flowering in E. grandiflorum. Because alterations in phenology can disrupt important ecological interactions, information on potential phenological shifts in species that interact with E. grandiflorum is essential in determining the net effect of climate-driven alterations in phenology.  相似文献   

14.
We studied biotic and abiotic factors that influence pollination in two sympatric winter flowering species. Helleborus foetidus and Helleborus bocconei flower simultaneously in winter. Although climatic conditions are not favorable for biotic pollination both species rely mainly on large bees of the genus Bombus. At the beginning of flowering, harsh climatic conditions are restrictive for insect visits. As flowering continues and temperatures rise, pollinator activity increases. The two plant species share pollinators that visit them indiscriminately. The flowers of the two species differ in form and insects visit H. foetidus by inserting their heads and H. bocconei ventrally: pollen load on insects is highly specialized. With the arrival of spring, many other species start to bloom and in spite of the large number of flowers still on the plants insects abandon Helleborus species. At the end of spring increasing biotic interactions take away pollinators from the Helleborus species.  相似文献   

15.
Recent anthropogenic climate change is strongly associated with average shifts toward earlier seasonal timing of activity (phenology) in temperate-zone species. Shifts in phenology have the potential to alter ecological interactions, to the detriment of one or more interacting species. Recent models predict that detrimental phenological mismatch may increasingly occur between plants and their pollinators. One way to test this prediction is to examine data from ecological communities that experience large annual weather fluctuations. Taking this approach, we analyzed interactions over a four-year period among 132 plant species and 665 pollinating insect species within a Mediterranean community. For each plant species we recorded onset and duration of flowering and number of pollinator species. Flowering onset varied among years, and a year of earlier flowering of a species tended to be a year of fewer species pollinating its flowers. This relationship was attributable principally to early-flowering species, suggesting that shifts toward earlier phenology driven by climate change may reduce pollination services due to phenological mismatch. Earlier flowering onset of a species also was associated with prolonged flowering duration, but it is not certain that this will counterbalance any negative effects of lower pollinator species richness on plant reproductive success. Among plants with different life histories, annuals were more severely affected by flowering–pollinator mismatches than perennials. Specialized plant species (those attracting a smaller number of pollinator species) did not experience disproportionate interannual fluctuations in phenology. Thus they do not appear to be faced with disproportionate fluctuations in pollinator species richness, contrary to the expectation that specialists are at greatest risk of losing mutualistic interactions because of climate change.  相似文献   

16.
Long-term studies of plant–pollinator interactions are almost nonexistent in the scientific literature. The objective of the present study was to determine changes and trends in the pollinator assemblage of ulmo (Eucryphia cordifolia; Cunoniaceae), a canopy-emergent tree found in Chilean temperate rainforests. We assessed the temporal variability of the pollinator assemblage and identified possible modulators of the observed temporal shifts. We sampled insect visitors to the flowers of 16 individual trees of E. cordifolia during 10 consecutive flowering seasons (2000–2009), recording a total of 137 pollinator species with a mean number of species per year of 44. Only three pollinator species (2.2 %) were recorded every year. Two bee species accounted for 50 % of all insect visits to flowers. One bee species, Bombus dahlbomii (native), was dominant in one season, whereas Apis mellifera (exotic) dominated during the next season. These interannual shifts in population abundances presented first-order dynamics that were characterized by oscillations with a period of 2 years. Changes in the abundances of the dominant pollinators, as well as differences in temperature and precipitation during insect emergence and flowering, led to a nested temporal structure of pollinator composition. Furthermore, the abundances of less common pollinators were sensitive to the abundance of the dominant bee species and to monthly maximum temperatures and the average precipitation during spring and summer. Based on our results and those from other studies, we predict a decline in the numbers of Bombus dahlbomii and nondominant native pollinators in response to new exotic arrivals.  相似文献   

17.
One of the most commonly seeded crops in Canada is canola, a cultivar of oilseed rape (Brassica napus). As a mass‐flowering crop grown intensively throughout the Canadian Prairies, canola has the potential to influence pollinator success across tens of thousands of square kilometers of cropland. Bumble bees (Bombus sp.) are efficient pollinators of many types of native and crop plants. We measured the influence of this mass‐flowering crop on the abundance and phenology of bumble bees, and on another species of social bee (a sweat bee; Halictus rubicundus), by continuously deploying traps at different levels of canola cultivation intensity, spanning the start and end of canola bloom. Queen bumble bees were more abundant in areas with more canola cover, indicating that this crop is attractive to queens. However, bumble bee workers were significantly fewer in these locations later in the season, suggesting reduced colony success. The median collection dates of workers of three bumble bee species were earlier near canola fields, suggesting a dynamic response of colonies to the increased floral resources. Different species experienced this shift to different extents. The sweat bee was not affected by canola cultivation intensity. Our findings suggest that mass‐flowering crops such as canola are attractive to bumble bee queens and therefore may lead to higher rates of colony establishment, but also that colonies established near this crop may be less successful. We propose that the effect on bumble bees can be mitigated by spacing the crop more evenly with respect to alternate floral resources.  相似文献   

18.
Various aspects of the pollination biology of the alpine flora of Kosciusko National Park, NSW, were examined from late December 1983 until the end of March 1984, including flowering phenology, corolla tube lengths, flower colour, ultraviolet reflectance patterns, visitation rates to the flowers and proboscis lengths of the flower-visiting insects. An average of 5.3 species flowered in each of 13, 2 m×2 m montane plots and 5.6 species in the 13 alpine plots. The maximum number in flower simultaneously averaged 4.1 species in the montane and 3.3 in the alpine plots; flowering peaked in mid-January, Corolla tube lengths of the flora averaged 1.73 mm. The most common floral colour was white or predominantly white (40 species), followed by yellow (14 species). Only six of the 38 species (16%) examined had some type of reflectance pattern; the remaining species all absobed ultraviolet. Flies appeared to be the major pollinators. The insects collected in the study area comprised 60 species of Diptera, 33 species of Hymenoptera, and several species each of Lepidoptera and Coleoptera. On average, 14.4% of flowers watched during 379 observation periods (10 min each) were visited. On average, each plant species was visited by 6.4 species of flies, 2.4 species of bees, wasps or sawflies, one species of butterfly or moth and 0.3 species of beetles. Visitation rates increased over the growing season, and were significantly affected by ambient temperature (positively), light levels (positively) and wind speed (negatively). The maximum proboscis length for the 25 most common species of bees was 2.76 mm, but 18 of 51 species of flies had proboscis lengths longer than this. The mean proboscis length for all 25 species of bees was 1.68 mm, and for 51 species of flies was 2.31 mm. Proboscis lengths for flies were positively correlated with the average corolla length for the plant species they visited. For bees, however, the range in proboscis lengths was relatively small and did not show this pattern. There appear to be significant differences between the plant-pollinator community of alpine Australia and other alpine areas where bumblebees are common pollinators. These differences include shorter proboscis and corolla tube lengths, and perhaps an increased diversity and significance of flies as pollinators.  相似文献   

19.
Sympatric and taxonomically related species may present pre- and/or postzygotic mechanisms for reproductive isolation. We compared the phenology and reproductive biology of Byrsonima intermedia and B. pachyphylla, two sympatric Malpighiaceae species, growing in a remnant of Cerrado in Central Brazil. Both species are evergreens and do not have an overlapping flowering period. In both species, dispersal occurs during the rainy season with low and intermediate overlap in the production of immature and mature fruits, respectively. Both species exhibit self-incompatibility (SI), or, in the case of B. intermedia, facultative SI, and, hence, depend on pollinators to compensate for the lack of spontaneous self-pollination. The flowers of the Byrsonima species were visited by fifteen species of bees that collected pollen and/or oil. Based on their more appropriate intrafloral posture, Epicharis flava and Centris varia were the main pollinators of both species, presenting more frequent visits and/or exhibiting trapline foraging behavior, tending to promote outcrossing. Temporal variation in flowering period and total or partial self-incompatibility seem to function as prezygotic isolation mechanisms that form barriers to gene flow between the studied species and probably avoid competition among pollinators. Both species make oil and pollen available to flower visitors and pollinators almost the entire year, but since Byrsonima intermedia has a long flowering time and is very abundant in the study area, it seems to be more important in maintaining flower-visiting bees.  相似文献   

20.
Recent changes in climate have led to significant shifts in phenology, with many studies demonstrating advanced phenology in response to warming temperatures. The rate of temperature change is especially high in the Arctic, but this is also where we have relatively little data on phenological changes and the processes driving these changes. In order to understand how Arctic plant species are likely to respond to future changes in climate, we monitored flowering phenology in response to both experimental and ambient warming for four widespread species in two habitat types over 21 years. We additionally used long‐term environmental records to disentangle the effects of temperature increase and changes in snowmelt date on phenological patterns. While flowering occurred earlier in response to experimental warming, plants in unmanipulated plots showed no change or a delay in flowering over the 21‐year period, despite more than 1 °C of ambient warming during that time. This counterintuitive result was likely due to significantly delayed snowmelt over the study period (0.05–0.2 days/yr) due to increased winter snowfall. The timing of snowmelt was a strong driver of flowering phenology for all species – especially for early‐flowering species – while spring temperature was significantly related to flowering time only for later‐flowering species. Despite significantly delayed flowering phenology, the timing of seed maturation showed no significant change over time, suggesting that warmer temperatures may promote more rapid seed development. The results of this study highlight the importance of understanding the specific environmental cues that drive species’ phenological responses as well as the complex interactions between temperature and precipitation when forecasting phenology over the coming decades. As demonstrated here, the effects of altered snowmelt patterns can counter the effects of warmer temperatures, even to the point of generating phenological responses opposite to those predicted by warming alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号