首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Selective estrogen receptor modulators (SERMs) represent a growing class of compounds that act as either estrogen receptor gonists or ntagonists in tissue-selective manner. SERMs with the appropriate selectivity profile offer the opportunity to dissociate the favorable bone and cardio-vascular effects of estrogen from its unfavorable stimulatory effects on the breast and uterus. The triphenylethylene drug tamoxifen proved to be invaluable to treat and protect against breast cancer and bone loss, probably reduces cardiovascular risk, but had side effects on uterus similar to natural estrogens. The tamoxifen derivate toremifene is also used to treat breast cancer, but has less effect on bone. The non-steroidal benzothiophene derivate, raloxifene, is the best SERM available thus far. It has the potential to prevent breast cancer (like tamoxifen), but has better profile in its actions on bone and cardiovascular system (produces a rapid reduction of serum cholesterol, decreases fibrinogen and lipoprotein, improves the vascular epithelial function, attenuates vascular intimal thickening, etc.). It does not increase the incidence of endometrial cancer. Compounds of this class are the first step in developing the perfect hormone replacement and other multitargeted therapy. This review summarizes the recent important knowledge about SERMs.  相似文献   

2.
3.
Ospemifene is a new selective estrogen receptor modulator (SERM) that is being developed for the treatment of urogenital atrophy and osteoporosis. Similarly to other SERMs, ospemifene exhibits antiestrogenic effects in breast tissue, which led to the hypothesis that it may be a potential breast cancer chemopreventive agent. We first assessed the ability of ospemifene, compared to tamoxifen and raloxifene, to prevent dimethylbenzanthracene (DMBA)-induced mammary tumors in female Sencar mice. Ospemifene (N = 18), tamoxifen (N = 20) and raloxifene (N = 17), each dosed at 50 mg/kg, were administered daily by oral gavage, in combination with 20 microg DMBA for the first 6 weeks. Control mice (N = 21) received vehicle plus DMBA only for the first 6 weeks. Daily treatment then continued for 37 weeks. As hypothesized, ospemifene greatly reduced the incidence of mammary carcinomas compared to control mice (p = 0.003), similar to tamoxifen (p = 0.0004); however, in the raloxifene group, no significant effect was seen in mammary tumor prevention (p = 0.20). A follow-up study comparing ospemifene (N = 20) to tamoxifen (N = 20) in the same model was then performed to confirm the results of the first study. The results of the follow-up study, which extended the treatment to 52 weeks, confirmed the results of our previous study, with ospemifene (p = 0.01) and tamoxifen (p = 0.004) significantly decreasing mammary carcinomas compared to controls. The results of these two studies suggest that women taking ospemifene for osteoporosis and/or urogenital atrophy may further benefit from ospemifene's breast cancer chemopreventive effects.  相似文献   

4.
Since most breast cancers occur in postmenopausal women and are hormone dependent, we developed a model system that mimics this situation. In this model, tumors of human estrogen receptor (ER) positive breast cancer cells stably transfected with aromatase (Ac-1) are grown in immune-compromised mice. Using this model we have explored a number of therapeutic strategies to maximize the antitumor efficacy of antiestrogens (AEs) and aromatase inhibitors (AIs). This intratumoral aromatase xenograft model has proved accurate in predicting the outcome of several clinical trials. In this current study we compared the effect of an AE toremifene and steroidal AI atamestane, alone or in combination, on growth of hormone-dependent human breast cancer. We have also compared toremifene plus atamestane combination with tamoxifen in this study. The growth of Ac-1 cells was inhibited by tamoxifen, toremifene and atamestane in vitro with IC(50) values of 1.8+/-1.3 microM, 1+/-0.3 microM and 60.4+/-17.2 microM, respectively. The combination of toremifene plus atamestane was found to be better than toremifene or atamestane alone in vitro. The effect of this combination was then studied in vivo using Ac-1 xenografts grown in ovariectomized female SCID mice. The mice were injected with toremifene (1000 microg/day), atamestane (1000 microg/day), tamoxifen (100 microg/day), or the combination of toremifene plus atamestane. In this study, our results indicate that the combination of toremifene plus atamestane was as effective as toremifene or tamoxifen alone but may not provide any additional benefit over toremifene alone or tamoxifen alone.  相似文献   

5.
Review of the pharmacological properties of toremifene   总被引:1,自引:0,他引:1  
New compounds were synthesized with the aim to develop new anti-estrogenic antitumor drugs. The biological properties of the molecules were screened by (1) estrogen receptor (ER) binding, (2) effect on MCF-7 cells, (3) uterotrophic effect and inhibition of estradiol induced uterotropic effect and (4) antitumor effect in DMBA induced rat mammary cancer. One of the molecules, Fc-1157a = toremifene, exhibited the following characteristics: competitive inhibition of [3H]estradiol binding to ER (IC50 = 0.3 mumol/l), inhibition of MCF-7 cell growth in a concentration-dependent manner and cell-killing effect at higher than 3 mumol/l concentrations. Minimal estrogenic dose of toremifene on rat uterus weight was about 40 times higher than that of tamoxifen. Toremifene had statistically significant effect against DMBA-induced rat mammary cancer. Further screening consisted of antitumor, pharmacokinetic and safety studies. Toremifene inhibited the growth of ER-negative, glucocorticoid sensitive, mouse uterine sarcoma in a dose-dependent manner. Pharmacokinetics and metabolism of toremifene resembled closely those of tamoxifen, but since the chlorine atom of the toremifene molecule was not metabolically cleaved tamoxifen and toremifene did not have chemically similar metabolites. Toremifene was well tolerated in animal toxicity studies. No hyperplastic or neoplastic nodules, which were seen in almost all high-dose (48 mg/kg for 24 weeks) tamoxifen-treated rats, were found in toremifene-treated rats (dose 48 mg/kg). In clinical phase I studies in healthy voluntary postmenopausal women, no side effects were reported, at doses less than or equal to 460 mg, neither after a single dose nor after five daily doses. At the dose of 680 mg two out of five persons experienced vertigo and headache. Toremifene, at the dose of 68 mg daily, had antiestrogenic effect on estradiol-induced human vaginal epithelial cells. Clinical phase II studies have confirmed that toremifene has a promising antitumor effect.  相似文献   

6.
The effects of toremifene, a new triphenylethylene derivative, on the uterus and DMBA-induced mammary tumors in rats were compared to tamoxifen. The ability of toremifene to compete with [3H]estradiol for cytoplasmic estrogen receptor from rat uterus was similar to tamoxifen, the IC50 being 26 and 23 microM respectively. In immature intact rats the two compounds, administered orally for three consecutive days, had similar intrinsic partial estrogenic efficacy, at 50 mg/kg, about 40% of that of estradiol benzoate (EB). However, at doses less than or equal to 10 mg/kg, the estrogenic effect of toremifene was seen at doses about 40 times higher than that of tamoxifen. The two compounds, administered together with a standard dose of EB, expressed the same maximal antiestrogenic efficacy (about 65% inhibition) at 50 mg/kg. However, the minimal effective antiestrogenic dose of toremifene was about 10 times that of tamoxifen and the ratio between antiestrogenic/estrogenic properties was favourable to toremifene. The duration of the antiestrogenic (antiuterotrophic) effect of a single oral dose (10 mg/kg) of the two compounds proved similar: at least 4 days in intact rats and 3 days in ovariectomized rats. In DMBA-induced tumor bearing rats toremifene was administered p.o., 6 times/week for 4 weeks at 0.08, 0.4, 2, 10 and 50 mg/kg. It was effective at the doses of 2, 10 and 50 mg/kg, inducing 39, 35 and 46% tumor regressions. The activity of toremifene at the minimal effective dose of 2 mg/kg was then compared with that of tamoxifen given at the same dose level. The compounds had comparable activity (47 vs 44% tumor regressions).  相似文献   

7.
We have compared the cell and tissue selective estrogenic and antiestrogenic activities of tamoxifen, raloxifene, ICI 164,384 and a permanently ionized derivative of tamoxifen — tamoxifen methiodide (TMI). This non-steroidal antiestrogen has limited ability to cross the blood brain barrier and is therefore less likely to cause the central nervous system disturbances caused by tamoxifen. We have used the stimulation of the specific activity of the “estrogen induced protein”, creatine kinase BB, as a response marker in bone, cartilage, uterine and adipose cells and in rat skeletal tissues, uterus and mesometrial adipose tissue. In vitro, TMI, tamoxifen and raloxifene mimicked the agonistic action of 17β-estradiol in ROS 17/2.8 rat osteogenic osteosarcoma, female calvaria, and SaOS2 human osteoblast cells. In Ishikawa endometrial cancer cells, tamoxifen showed reduced agonistic effects and raloxifene showed no stimulation. However, as antagonists, tamoxifen and raloxifene were equally effective in Ishikawa or SaOS2 cells. In immature rats, all four of the antiestrogens inhibited estrogen action in diaphysis, epiphysis, uterus and mesometrial adipose tissue; when administered alone, tamoxifen stimulated creatine kinase (CK) specific activity in all these tissues. Raloxifene and TMI, however, stimulated only the skeletal tissues and had no stimulatory effect in the uterus or mesometrial fat, and the pure antiestrogen ICI 164,384 showed no stimulatory effect in any of the tissues. The simultaneous injection of estrogen, plus an antiestrogen which acted as an agonist, resulted in lower CK activity than after injection of either agent alone. These differential effects, in vivo and in vitro, may point the way to a wider therapeutic choice of an appropriate antiestrogen which, although antagonizing E2 action in mammary cancer, can still protect against osteoporosis and cardiovascular disease and not stimulate the uterus with its attendant undesirable changes, or interfere with the beneficial action of E2 in the brain.  相似文献   

8.
Clinical studies have shown that estrogen replacement therapy (ERT) reduces the incidence and severity of osteoporosis and cardiovascular disease in postmenopausal women. However, long term estrogen treatment also increases the risk of endometrial and breast cancer. The selective estrogen receptor (ER) modulators (SERMs) tamoxifen and raloxifene, cause antagonistic and agonistic responses when bound to the ER. Their predominantly antagonistic actions in the mammary gland form the rationale for their therapeutic utility in estrogen-responsive breast cancer, while their agonistic estrogen-like effects in bone and the cardiovascular system make them candidates for ERT regimens. Of these two SERMs, raloxifene is preferred because it has markedly less uterine-stimulatory activity than either estrogen or tamoxifen. To identify additional SERMs, a method to classify compounds based on differential gene expression modulation was developed. By analysis of 24 different combinations of genes and cells, a selected set of assays that permitted discrimination between estrogen, tamoxifen, raloxifene, and the pure ER antagonist ICI164384 was generated. This assay panel was employed to measure the activity of 38 compounds, and the gene expression fingerprints (GEFs) obtained for each compound were used to classify all compounds into eight groups. The compound's GEF predicted its uterine-stimulatory activity. One group of compounds was evaluated for activity in attenuating bone loss in ovariectomized rats. Most compounds with similar GEFs had similar in vivo activities, thereby suggesting that GEF-based screens could be useful in predicting a compound's in vivo pharmacological profile.  相似文献   

9.
In 1936, Professor Antoine Lacassagne suggested that breast cancer could be prevented by developing drugs to block estrogen action in the breast. Jensen discovered the physiologic target, the estrogen receptor, that regulates estrogen action in its target tissues and Lerner discovered the first nonsteroidal antiestrogen MER25. However, the success of tamoxifen as a treatment of breast cancer opened the door for the testing of the worth of tamoxifen to reduce breast cancer incidence in high-risk women. In 1998, Fisher showed that tamoxifen could reduce breast cancer incidence by 50%. Nevertheless, only half the women who develop breast cancer have risk factors other than age, so what can be done for women without risk factors? The recognition that nonsteroidal antiestrogens have the ability to modulate estrogen action selectively has advanced the design and development of new drug for multiple diseases. Tamoxifen and raloxifene maintain bone density and raloxifene is now used to prevent osteoporosis and is being tested as a preventive for coronary heart disease and breast cancer. The drug group is now known as selective estrogen receptor modulators (SERMs) and the challenge is to design new agents for multiple applications. If the 20th century was the era of chemotherapy, the 21st century will be the era of chemoprevention.  相似文献   

10.
The intended therapeutic effect of gonadotropin-releasing hormone (GnRH) agonists is hypogonadism, which is a leading cause of osteoporosis in men. Consistent with this observation, GnRH agonists decrease bone mineral density and increase fracture risk in men with prostate cancer. GnRH agonists markedly decrease serum levels of both testosterone and estrogen. Estrogens play a central role in homeostasis of the normal male skeleton, and the available evidence suggests that estrogen deficiency rather than testosterone deficiency accounts for the adverse skeletal effects of GnRH agonists. The central role of estrogens in male bone metabolism provides a strong rationale to evaluate selective estrogen receptor modulators for prevention of treatment-related osteoporosis in men with prostate cancer. Preliminary evidence suggests that both raloxifene and toremifene increase bone mineral density in GnRH agonist-treated men. An ongoing pivotal study will evaluate the effects of toremifene on fractures and other complications of GnRH agonists in men with prostate cancer.  相似文献   

11.
AimsEstrogen receptor activation has been shown to reduce body weight and produce conditioned taste avoidance (CTA) when estradiol administration is paired with a novel tastant. This study determined if the selective estrogen receptor modulators tamoxifen and raloxifene, which effectively prevent and treat breast cancer, can induce a CTA and alter body weight in ovariectomized (OVX)-female rats.Main methodsDuring conditioning, OVX-female rats were injected with tamoxifen, raloxifene, 17β-estradiol or vehicle, or were uninjected, prior to drinking 0.3 M sucrose in a lickometer. Immediately following sucrose access, alterations in locomotor activity and thigmotaxis (anxiety) were assessed in an open field apparatus. Conditioned drug effects on drinking, locomotor activity and anxiety were examined on a separate test day.Key findingsOur results suggest that both tamoxifen and raloxifene produce CTA that is similar to that produced by estradiol. Both the number and size of bursts of licking were significantly reduced, as well as body weight gain, in OVX-female rats treated with tamoxifen or raloxifene.SignificanceThe results of the present study suggest that tamoxifen and raloxifene may have the potential to produce CTA in breast cancer patients receiving chemoprevention care.  相似文献   

12.
The effect of toremifene on NK-cells isolated from the spleen of NZB/NZW mice was studied in comparison to tamoxifen and estradiol. Unlike estradiol but like tamoxifen, toremifene did not influence the activity of NK-cells. Low doses (0.1 and 10.0 mg/kg) of toremifene did not suppress, but a high dose of toremifene and tamoxifen (50 mg/kg for 6 weeks) suppressed the stimulating effect of human interferon alpha on the cells.  相似文献   

13.
Jordan VC  Brodie AM 《Steroids》2007,72(1):7-25
This article describes the origins and evolution of "antiestrogenic" medicines for the treatment and prevention of breast cancer. Developing drugs that target the estrogen receptor (ER) either directly (tamoxifen) or indirectly (aromatase inhibitors) has improved the prognosis of breast cancer and significantly advanced healthcare. The development of the principles for treatment and the success of the concept, in practice, has become a model for molecular medicine and presaged the current testing of numerous targeted therapies for all forms of cancer. The translational research with tamoxifen to target the ER with the appropriate duration (5 years) of adjuvant therapy has contributed to the falling national death rates from breast cancer. Additionally, exploration of the endocrine pharmacology of tamoxifen and related nonsteroidal antiestrogen (e.g. keoxifene now known as raloxifene) resulted in the laboratory recognition of selective ER modulation and the translation of the concept to use raloxifene for the prevention of osteoporosis and breast cancer. However, the extensive evaluation of tamoxifen treatment revealed small but significant side effects such as endometrial cancer, blood clots and the development of acquired resistance. The solution was to develop drugs that targeted the aromatase enzyme specifically to prevent the conversion of androstenedione to estrone and subsequently estradiol. The successful translational research with the suicide inhibitor 4-hydroxyandrostenedione (known as formestane) pioneered the development of a range of oral aromatase inhibitors that are either suicide inhibitors (exemestane) or competitive inhibitors (letrozole and anastrozole) of the aromatase enzyme. Treatment with aromatase inhibitors is proving effective and is associated with reduction in the incidence of endometrial cancer and blood clots when compared with tamoxifen and there is also limited cross resistance so treatment can be sequential. Current clinical trials are addressing the value of aromatase inhibitors as chemopreventive agents for postmenopausal women.  相似文献   

14.
Tamoxifen and toremifene are antiestrogenic drugs successfully used in the therapy of breast cancer. Rheumatoid arthritis and malaria have been treated with chloroquine for decades. Unfortunately, tamoxifen and chloroquine are reported to induce retinal changes as a side effect. We now studied the effects of tamoxifen, toremifene, and chloroquine on the viability of the human retinoblastomal cell line Y79, using the WST-1 test or measurement of the cellular ATP content. The studies were made on Y79 cell cultures and on cocultures of Y79 cells and retinal pigment epithelial cell line ARPE-19. The cocultures were used to clarify the effect of retinal pigment epithelium on toxicity to Y79 cells. In the coculture, the drugs were applied to ARPE-19 cells growing in the culture inserts on top of Y79 cells and the viability of ARPE-19 and Y79 cells was assessed separately. Tamoxifen, toremifene, and chloroquine reduced dose-dependently the viability of Y79 cells after 24-h exposure. The ARPE-19 cells proved to be protective after chloroquine exposure in the coculture. The results shed light on the toxicity of tamoxifen and chloroquine in Y79 cells in vitro. With the coculture we were able to simulate the in vivo route of chloroquine to the retina via the retinal pigment epithelium.  相似文献   

15.
Toremifene is a new antiestrogenic compound. Toremifene has definite antitumor effect in advanced breast cancer. The response rate in the present phase II study among postmenopausal women, mostly not pretreated with systemic therapy and with ER positive or not determined ER status in tumor tissue, was 11/23 (48%; 95% confidence interval 37-59%) including 6 complete responses. The toxicity profile was similar to that of tamoxifen. It is concluded that toremifene is at least as active as tamoxifen in advanced breast cancer and that a randomized study between these two antiestrogens is indicated.  相似文献   

16.
A radiochemical assay was utilized to study the inhibitory effects of clomiphene and tamoxifen on the cholesterol side-chain cleavage enzyme activity in a mitochondrial preparation of granulosa cells isolated from mature ovarian follicles of laying hens. At saturating substrate concentrations, both clomiphene and tamoxifen were able to suppress enzyme activity in a dose-related manner (IC50 1.8 X 10(-5) M). Double reciprocal plots of kinetic data show that the inhibition is mixed, exhibiting competitive kinetics at low concentrations, whereas at high concentrations, the inhibition is of a non-competitive nature. The competitive inhibition constants as determined from Dixon plots are 2 X 10(-5) M for clomiphene and 2.3 X 10(-5) M for tamoxifen. It is concluded that, in granulosa cells, clomiphene and tamoxifen directly inhibit the mitochondrial cholesterol side-chain cleavage activity. This inhibition may represent an important aspect of the mode of action of clomiphene and tamoxifen.  相似文献   

17.
18.
Estrogen synthesis in human colon cancer epithelial cells   总被引:7,自引:0,他引:7  
Epidemiological and experimental data suggest an involvement of estrogen in the development and progression of colorectal cancer. In order to determine whether local synthesis of estrogen occurred in human colonic cancer cells, two colorectal cancer cell lines, HCT8 and HCT116, were evaluated for gene expression and enzyme activity of cytochrome P450 aromatase. In addition, the effect on aromatase expression of charcoal-stripped fetal calf serum, of quercetin and genistein and of tamoxifen and raloxifene was investigated in both cell lines. RT-PCR analysis revealed that colorectal adenocarcinoma cell lines contain aromatase as a major component. The conversion of [3H]-androstenedione to estrone and labeled water was dose-dependently inhibited by 4-hydroxyandrostenedione and obeyed Michaelis–Menten kinetic with apparent Km values of 20 nM and Vmax values of approx. 200 and 500 fmol/mg protein/h for HCT8 and HCT116 cells, respectively. After 24 h incubation, genistein (1 μM) significantly increased aromatase activity in HCT8 cells, with no effect on HCT116 cells. In accord with previous observation in reproductive tissues, quercetin (1 μM) significantly inhibited the enzyme activity in both cell lines. Also tamoxifen (100 nM) acted as inhibitor, while raloxifene (10 nM) decreased the enzyme activity only in HCT116 cells. The aromatase gene expression modulation by these effective agents was consistent with their effects on enzyme activity. These findings demonstrate for the first time that colorectal adenocarcinoma cell lines express aromatase. Interestingly, the enzyme activity was inhibited by quercetin, one major dietary flavonoid, by tamoxifen, a hormonal therapeutic agent for breast cancer, and by raloxifene, used in the prevention of postmenopausal osteoporosis.  相似文献   

19.
Selective estrogen receptor modulator is a proven agent for chemoprevention and chemotherapy of cancer. Raloxifene, a mixed estrogen agonist/antagonist, was developed to prevent osteoporosis and potentially reduce the risk of breast cancer. In this study, we examined the effect of raloxifene on the TSU-PR1 cell line. This cell line was originally reported to be a prostate cancer cell line, but recently it has been shown to be a human bladder transitional cell carcinoma cell line. The TSU-PR1 cell line contains high levels of estrogen receptor beta. Following treatment with raloxifene, evidence of apoptosis, including change in nuclear morphology, DNA fragmentation, and cytochrome c release, was observed in a dose-dependent manner in the TSU-PR1 cells (10(-9) to 10(-6) m range). We observed no detectable change in the steady-state levels of Bax, Bcl-2, and Bcl-X(L) following raloxifene treatment. However, raloxifene induced caspase-dependent cleavage of BAD to generate a 15-kDa truncated protein. Overexpression of a double mutant BAD resistant to caspase 3 cleavage blocked raloxifene-induced apoptosis. These results demonstrate that raloxifene induces apoptosis through the cleavage of BAD in TSU-PR1 cells. This molecular mechanism of apoptosis suggests that raloxifene may be a therapeutic agent for human bladder cancer.  相似文献   

20.
The discovery of the first nonsteroidal antiestrogen ethamoxytriphetol (MER25) in 1958, opened the door to a wide range of clinical applications. However, the finding that ethamoxytriphetol was a “morning after” pill in laboratory animals, energized the pharmaceutical industry to discover more potent derivatives. In the wake of the enormous impact of the introduction of the oral contraceptive worldwide, contraceptive research was a central focus in the early 1960’s. Numerous compounds were discovered e.g., clomiphene, nafoxidine, and tamoxifen, but the fact that clinical studies showed no contraceptive actions, but, in fact, induced ovulation, dampened enthusiasm for clinical development. Only clomiphene moved forward to pioneer an application to induce ovulation in subfertile women. The fact that all the compounds were antiestrogenic made an application in patients to treat estrogen responsive breast cancer, an obvious choice. However, toxicities and poor projected commercial returns severely retarded clinical development for two decades. In the 1970’s a paradigm shift in the laboratory to advocate long term adjuvant tamoxifen treatment for early (non-metastatic) breast cancer changed medical care and dramatically increased survivorship. Tamoxifen pioneered that paradigm shift but it became the medicine of choice in a second paradigm shift for preventing breast cancer during the 1980’s and 1990’s. This was not surprising as it was the only medicine available and there was laboratory and clinical evidence for the eventual success of this application. Tamoxifen is the first medicine to be approved by the Food and Drug Administration (FDA) to reduce the risk of breast cancer in women at high risk. But it was the re-evaluation of the toxicology of tamoxifen in the 1980’s and the finding that there was both carcinogenic potential and a significant, but small, risk of endometrial cancer in postmenopausal women that led to a third paradigm shift to identify applications for selective estrogen receptor (ER) modulation. This idea was to establish a new group of medicines now called selective ER modulators (SERMs). Today there are 5 SERMs FDA approved (one other in Europe) for applications ranging from the reduction of breast cancer risk and osteoporosis to the reduction of menopausal hot flashes and improvements in dyspareunia and vaginal lubrication. This article charts the origins of the current path for progress in women’s health with SERMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号