首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity of epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) to induce internalization and degradation of the EGF receptor was compared in NIH-3T3 cells expressing the human EGF receptor. This study was initiated following the observation that TGF-alpha was much less efficient relative to EGF in generating a Mr = 125,000 amino-terminally truncated degradation product from the mature EGF receptor (EGF-dependent generation of this degradation product is described in S.J. Decker, J. Biol. Chem., 264:17641-17644). Pulse-chase experiments revealed that EGF generally stimulated EGF receptor degradation to a greater extent than TGF-alpha. Both ligands induced EGF receptor internalization to similar degrees. However, recovery of [125I]-EGF binding following incubation with EGF or TGF-alpha was much faster for TGF-alpha treated cells. Recovery of [125I]-EGF binding after TGF-alpha treatment did not appear to require protein synthesis. Tyrosine phosphorylation of EGF receptor from cells treated with TGF-alpha decreased more rapidly following removal of TGF-alpha compared to cells treated similarly with EGF. These data suggest that EGF routes the EGF receptor directly to a degradative pathway, whereas TGF-alpha allows receptor recycling prior to degradation, and that tyrosine phosphorylation could play a role in this differential receptor processing.  相似文献   

2.
Circular dichroism (CD) and Fourier transform infrared spectroscopic studies have shown that the secondary structure of transforming growth factor alpha (TGF-alpha) is very similar to that of epidermal growth factor (EGF). The infrared spectra revealed a minor difference between the two proteins, in particular in the beta-sheet structure. A large difference was observed with CD between the two proteins in the apparent conformation each adopts when the disulfide bonds are reduced. Reduced TGF-alpha showed a distinct alpha-helical conformation only at a high trifluoroethanol concentration, whereas reduced EGF assumed an alpha-helical conformation in the absence of trifluoroethanol. This indicates that these two proteins adopt different secondary structures in the absence of disulfide bonds, although they assume similar folding structures in their presence. These data suggest that the disulfide bonds to a large degree dictate the conformation of these two proteins. Additionally, differences in the dynamic behavior between EGF and TGF-alpha were also observed. Infrared experiments showed that the hydrogen-deuterium exchange rate is much higher for TGF-alpha than for EGF, indicating that TGF-alpha is a more flexible molecule. The rate of reduction of the disulfide bonds by dithiothreitol was also faster for TGF-alpha. Therefore, it can be concluded that although EGF and TGF-alpha have a similar overall conformation, TGF-alpha is a more flexible molecule than EGF.  相似文献   

3.
A431 cells express high numbers of epidermal growth factor (EGF) receptors and produce a ligand for these receptors, transforming growth factor-alpha (TGF-alpha). We have obtained evidence that the EGF receptors on these cells may be activated through an "autocrine" pathway by ligand and have investigated whether activation of phosphorylation of the receptor by the endogenously produced TGF-alpha occurs intracellularly or at the cell surface. When A431 cells were cultured under serum-free conditions, in the absence of exogenous ligand, EGF receptors were found to have a basal level of phosphorylation. When cells were labeled by culturing with 32Pi in the continuous presence of monoclonal antibodies that block binding of TGF-alpha to the EGF receptor, phosphorylation decreased to 30 +/- 10% of the basal level. This reduction could not be accounted for by the decrease in receptor content attributable to down-regulation and catabolism of EGF receptors that resulted from the binding of anti-receptor monoclonal antibodies. The reduction in receptor phosphorylation mediated by antibody was accompanied by the accumulation of increased levels of secreted TGF-alpha species in the culture medium. We also pulse-labeled A431 cells for 15 min with [35S]cysteine and immunoprecipitated the cell lysate with anti-phosphotyrosine antibody after various chase periods. Tyrosine-phosphorylated EGF receptor became detectable after 40 min of chase and reached a maximum after 4-6 h; these times are in agreement with the intervals required for EGF receptors to reach the cell surface after synthesis and then to achieve maximal expression. In addition, only the 170-kDa, mature EGF receptor species, and not the 160-kDa intracellular precursor, was immunoprecipitated with the anti-phosphotyrosine antibody. The results of these pulse-chase experiments and the finding that anti-receptor monoclonal antibody can block receptor phosphorylation suggest that activation of EGF receptors can result from the binding of an endogenous ligand (presumably TGF-alpha), which occurs at the cell surface and not during receptor biosynthesis and intracellular processing.  相似文献   

4.
Endocytic trafficking of many types of receptors can have profound effects on subsequent signaling events. Quantitative models of these processes, however, have usually considered trafficking and signaling independently. Here, we present an integrated model of both the trafficking and signaling pathway of the epidermal growth factor receptor (EGFR) using a probability weighted-dynamic Monte Carlo simulation. Our model consists of hundreds of distinct endocytic compartments and approximately 13,000 reactions/events that occur over a broad spatio-temporal range. By using a realistic multicompartment model, we can investigate the distribution of the receptors among cellular compartments as well as their potential signal transduction characteristics. Our new model also allows the incorporation of physiochemical aspects of ligand-receptor interactions, such as pH-dependent binding in different endosomal compartments. To determine the utility of this approach, we simulated the differential activation of the EGFR by two of its ligands, epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha). Our simulations predict that when EGFR is activated with TGF-alpha, receptor activation is biased toward the cell surface whereas EGF produces a signaling bias toward the endosomal compartment. Experiments confirm these predictions from our model and simulations. Our model accurately predicts the kinetics and extent of receptor downregulation induced by either EGF or TGF-alpha. Our results suggest that receptor trafficking controls the compartmental bias of signal transduction, rather than simply modulating signal magnitude. Our model provides a new approach to evaluating the complex effect of receptor trafficking on signal transduction. Importantly, the stochastic and compartmental nature of the simulation allows these models to be directly tested by high-throughput approaches, such as quantitative image analysis.  相似文献   

5.
Carcinoma cells frequently coexpress transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor (EGF) receptor, implicating an autocrine function of carcinoma-derived TGF-alpha. Using a monoclonal antibody (425) to the EGF-receptor, we investigated the role of exogenous and tumor cell-derived EGF/TGF-alpha mitogenic activities in proliferation of cell lines derived from solid tumors. Monoclonal antibody 425 was chosen for these studies because it inhibits binding of EGF/TGF-alpha to the EGF-receptor and effectively blocks activation of the EGF-receptor by EGF/TGF-alpha. Seven malignant cell lines originating from carcinomas of colon, pancreas, breast, squamous epithelia, and bladder expressed surface EGF-receptor and secreted EGF/TGF-alpha-like mitogenic activities into their tissue culture media. All cell lines were maintained in a defined medium free of exogenous EGF/TGF-alpha. EGF and TGF-alpha added to the culture medium stimulated proliferation of five cell lines to comparable levels. EGF/TGF-alpha-dependent proliferation was significantly reduced by addition of MAb 425 to culture media. In addition, monoclonal antibody 425 reduced proliferation of the five EGF/TGF-alpha responsive cell lines in the absence of exogenous EGF/TGF-alpha. Antiproliferative effects induced by monoclonal antibody 425 were reversible and could be overcome by addition of EGF to culture media. Our results indicate that tumor-derived EGF-receptor-reactive mitogens can promote proliferation of carcinoma cells in an autocrine fashion.  相似文献   

6.
We have recently shown that epidermal growth factor (EGF) is capable of positive regulation of IFN-gamma production, thus establishing a functional relationship between nonhemopoietic growth factors and the immune system. In order to study this relationship further, EGF and the EGF-related growth factors transforming growth factor-alpha (TGF-alpha) and vaccinia virus growth factor (VGF), which stimulate cellular proliferation via binding to the EGF receptor, were studied for their functional and physicochemical effects on IFN-gamma production. In contrast to the positive signal of purified murine EGF and recombinant human EGF (both at 1 nM), neither synthetic TGF alpha nor recombinant VGF were capable of restoring competence for IFN-gamma production by Th cell-depleted spleen cell cultures. TGF-alpha and VGF, in molar excess, also failed to block the helper signal of EGF for IFN-gamma production. Thus TGF-alpha and VGF failed to functionally compete for the EGF receptor in the murine spleen cell system. Both TGF-alpha and VGF stimulated murine 3T3 cell proliferation at concentrations similar to those of EGF, and thus their failure to provide help for IFN-gamma production was not due to a general lack of biologic activity. Binding studies with 125I-EGF suggest that the EGF receptor on murine lymphocytes is not constitutively expressed, but inducible by the T cell mitogen staphylococcal enterotoxin A. TGF-alpha did not compete with 125I-EGF for the induced receptor. The data suggest that lymphocytes express a novel inducible EGF receptor that differs from that expressed on cells such as 3T3 fibroblasts.  相似文献   

7.
T3M4 human pancreatic carcinoma cells avidly bound and internalized 125I-labeled epidermal growth factor (EGF) but did not readily degrade the ligand. Pulse-chase experiments in which the cell-bound radioactivity was allowed to dissociate into the incubation medium in the presence of unlabeled EGF indicated that the majority of the released 125I-EGF consisted of intact EGF and a slightly processed species that readily bound to the cell. Omission of unlabeled EGF during the chase period markedly decreased the amount of radioactivity in the incubation medium, mainly as a result of the rebinding of EGF to the cells. In contrast, T3M4 cells readily degraded 125I-labeled transforming growth factor-alpha (TGF-alpha), and the released radiolabeled products did not rebind to the cells. Both ligands were released from T3M4 cells under acidic conditions, complete dissociation occurring at a pH of 4.5 for EGF, and a pH of 6.5 for TGF-alpha. A 431 human epidermoid carcinoma cells and ASPC-1 human pancreatic carcinoma cells also failed to extensively degrade 125I-EGF, whereas Rat-1 fibroblasts markedly degraded the growth factor. As in the case of T3M4 cells, ASPC-1 cells extensively degraded 125I-TGF-alpha. Degradation of either ligand was blocked by the lysosomotropic compound methylamine in all the tested cell lines. Immunoprecipitation of the EGF receptor with specific polyclonal antibodies and Western blot analysis revealed the anticipated 170-kDa protein in T3M4 cells. Both EGF and TGF-alpha enhanced EGF receptor degradation, but TGF-alpha was less effective than EGF. These findings indicate that in certain cell types EGF and TGF-alpha may be differentially processed.  相似文献   

8.
Estrogen-stimulated growth of the human mammary adenocarcinoma cell line MCF-7 is significantly inhibited by monoclonal antibodies to the epidermal growth factor (EGF) receptor that act as antagonists of EGF's mitogenic events by competing for high-affinity EGF receptor binding sites. These antibodies likewise inhibit the EGF or transforming growth factor-alpha (TGF-alpha)-stimulated growth of these MCF-7 cells. An analogous pattern of specific EGF or TGF-alpha growth inhibitory activity was obtained using a synthetic peptide analog encompassing the third disulfide loop region of TGF-alpha, but containing additional modifications designed for increased membrane affinity [( Ac-D-hArg(Et)2(31),Gly32,33]HuTGF-alpha(31-43)NH2). The growth factor antagonism by this synthetic peptide was specific in that it inhibited EGF, TGF-alpha, or estrogen-stimulated growth of MCF-7 cells but did not inhibit insulin-like growth factor-1 (IGF-1)-stimulated cell growth. Altogether, these results suggest that a significant portion of the estrogen-stimulated growth of these MCF-7 cells is mediated in an autocrine/paracrine manner by release of EGF or TGF-alpha-like growth factors. The TGF-alpha peptide likewise inhibited EGF- but not fibroblast growth factor (FGF)- or platelet-derived growth factor (PDGF)-stimulated growth of NIH-3T3 cells in completely defined media; but had no effect on growth or DNA synthesis of G0-arrested cells, nor did it effect growth of NR-6 cells, which are nonresponsive to EGF. Although this synthetic peptide did not directly compete with EGF for cell surface receptor binding, it exhibited binding to a cell surface component (followed by internalization), which likewise was not competed by EGF. The peptide did not directly inhibit EGF-stimulated phosphorylation of the EGF receptor, nor did it inhibit phosphorylation of an exogenous substrate, angiotensin II, by activated EGF receptor. The TGF-alpha peptide did, however, affect the structure of laminin as manifested by laminin self-aggregation; this affect on laminin may, in turn, have a modulatory effect on EGF-mediated cell growth.  相似文献   

9.
The epidermal growth factor (EGF) receptor mediates the induction of a transformed phenotype in normal rat kidney (NRK) cells by transforming growth factors (TGFs). The ability of EGF and its analogue TGF-alpha to induce the transformed phenotype in NRK cells is greatly potentiated by TGF-beta, a polypeptide that does not interact directly with binding sites for EGF or TGF-alpha. Our evidence indicates that TGF-beta purified from retrovirally transformed rat embryo cells and human platelets induces a rapid (t 1/2 = 0.3 h) decrease in the binding of EGF and TGF-alpha to high-affinity cell surface receptors in NRK cells. No change due to TGF-beta was observed in the binding of EGF or TGF-alpha to lower affinity sites also present in NRK cells. The effect of TGF-beta on EGF/TGF-alpha receptors was observed at concentrations (0.5-20 pM) similar to those at which TGF-beta is active in promoting proliferation of NRK cells in monolayer culture and semisolid medium. Affinity labeling of NRK cells and membranes by cross-linking with receptor-bound 125I-TGF-alpha and 125I-EGF indicated that both factors interact with a common 170-kD receptor structure. Treatment of cells with TGF-beta decreased the intensity of affinity-labeling of this receptor structure. These data suggest that the 170 kD high-affinity receptors for EGF and TGF-alpha in NRK cells are a target for rapid modulation by TGF-beta.  相似文献   

10.
We previously implicated tumor necrosis factor-alpha converting enzyme (TACE/ADAM17) in the processing of the integral membrane precursor to soluble transforming growth factor-alpha (TGF-alpha), pro-TGF-alpha. Here we examined TGF-alpha processing in a physiologically relevant cell model, primary keratinocytes, showing that cells lacking TACE activity shed dramatically less TGF-alpha as compared with wild-type cultures and that TGF-alpha cleavage was partially restored by infection of TACE-deficient cells with TACE-encoding adenovirus. Moreover, cotransfection of TACE-deficient fibroblasts with pro-TGF-alpha and TACE cDNAs increased shedding of mature TGF-alpha with concomitant conversion of cell-associated pro-TGF-alpha to a processed form. Purified TACE accurately cleaved pro-TGF-alpha in vitro at the N-terminal site and also cleaved a soluble form of pro-TGF-alpha containing only the ectodomain at the C-terminal site. In vitro, TACE accurately cleaved peptides corresponding to cleavage sites of several epidermal growth factor (EGF) family members, and transfection of TACE into TACE-deficient cells increased the shedding of amphiregulin and heparin-binding EGF (HB-EGF) proteins. Consistent with the hypothesis that TACE regulates EGF receptor (EGFR) ligand availability in vivo, mice heterozygous for Tace and homozygous for an impaired EGFR allele (wa-2) were born with open eyes significantly more often than Tace(+/+)Egfr(wa-2)(/)(wa-2) counterparts. Collectively, these data support a broad role for TACE in the regulated shedding of EGFR ligands.  相似文献   

11.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   

12.
Administration of pharmacological doses of epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) in young rats stimulates gastric mucosal proliferation, but, in aged rats, the same treatment inhibits proliferation. This may be due to enhanced ligand-induced internalization of EGF receptor (EGFR). In support of this, we demonstrated that although a single injection of EGF (10 microg/kg) or TGF-alpha (5 microg/kg) in young (4-6 mo old) rats greatly increased membrane-associated EGFR tyrosine kinase activity, the same treatment slightly inhibited the enzyme activity in aged (24 mo old) rats. This treatment also produced a greater abundance of punctate cytoplasmic EGFR staining in gastric epithelium of aged rats, consistent with EGFR internalization. In vitro analyses demonstrated that exposure of isolated gastric mucosal cells from aged but not young rats to 100 pM TGF-alpha resulted in marked increases in intracellular EGFR tyrosine kinase activity and that induction of EGFR tyrosine kinase activity in mucosal membranes from aged rats occurred at doses 1,000-fold less than those required in young rats. Our data suggest that aging enhances sensitivity of the gastric mucosa to EGFR ligands. This may partly explain EGFR-mediated inhibition of gastric mucosal proliferation in aged rats.  相似文献   

13.
Growth factors produced in the uterine endometrium are considered to be involved in the proliferation of the mouse uterine stromal cells induced by estradiol-17beta (E(2)) and progesterone (P). The effect of epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha), one of EGF-related growth factors, on the proliferation of mouse uterine stromal cells was studied in a serum-free culture. The growth of the uterine stromal cells was measured by MTT assay. EGF was found to increase the number of uterine stromal cells in a dose-dependent manner. The DNA-replicating cells were investigated using the immunocytochemical detection of bromodeoxyuridine (BrdU)-labeled cells. EGF and TGF-alpha increased the percentage of BrdU-labeled cells in a dose-dependent manner. Administration of the combination of E(2) (10(-9) M) and P (10(-7) M) for 2 days increased the percentage of BrdU-labeled cells 2.3-fold. The stimulatory effect of EGF, TGF-alpha and the combination of E(2) and P on DNA replication in the uterine stromal cells was repressed by RG-13022 (10(-5) M, the inhibitor of the EGF receptor tyrosine kinase). RT-PCR analysis of EGF-receptor-, TGF-alpha-, and EGF-mRNA was carried out in the cultured uterine stromal cells, and revealed the expression of those mRNAs. These data supported the hypothesis that uterine endometrial stromal growth induced by sex steroids required the EGF family of ligands such as EGF and TGF-alpha, both produced in the stromal cells, acting for DNA synthesis through EGF receptors.  相似文献   

14.
The factors that promote blastocoel expansion in the preimplantation mouse embryo are not well understood. Since cAMP stimulates the rate of blastocoel expansion and, in other systems, EGF can elevate intracellular cAMP levels, we investigated the ability of either TGF-alpha or EGF to stimulate the rate of blastocoel expansion in the mouse. Picomolar concentrations of either TGF-alpha or EGF stimulate the rate of blastocoel expansion in a concentration-dependent manner, and the continual presence of the growth factor is required to observe the stimulatory effect. Neutralizing antibodies to either TGF-alpha or EGF inhibit the TGF-alpha or EGF stimulatory effect, respectively. An antibody to the extracellular domain of the EGF receptor stimulates the rate of blastocoel expansion in a concentration-dependent manner, whereas an antibody to the cytoplasmic domain of the receptor does not. Tyrphostin RG 50864, which inhibits the EGF receptor kinase activity, inhibits the TGF-alpha stimulation of the rate of blastocoel expansion in a concentration-dependent manner; the less active tyrphostin, RG 50862, has no inhibitory effect. In addition, TGF-alpha does not stimulate a precocious onset of cavitation. The stimulatory effect on the rate of blastocoel expansion elicited by TGF-alpha or EGF is observed in 70% of the embryos (responders). Responders and nonresponders have similar intracellular ATP levels and cell numbers. Whereas TGF-alpha stimulates the uptake of [35S]methionine into the acid-soluble and acid-insoluble pools in the responders, TGF-alpha has no stimulatory effect in the nonresponders. Results of these experiments suggest that an initial differentiative function of the first mammalian epithelium--fluid transport--is sensitive to peptide growth factor modulation.  相似文献   

15.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

16.
Transforming growth factor-alpha (TGF-alpha) is an autocrine growth factor for epidermal keratinocytes that can induce its own expression (autoinduction). Because the regulation of this process may be important for the control of epidermal growth, we examined the roles of EGF receptor tyrosine kinase and protein kinase C (PKC) in TGF-alpha autoinduction in cultured human keratinocytes. Antiphosphotyrosine immunoblot analysis demonstrated that EGF and TGF-alpha rapidly and markedly stimulated tyrosine phosphorylation of a 170 kDa protein in growth factor-deprived keratinocytes. This protein was identified as the EGF receptor by immuno-precipitation using anti-EGF receptor mAbs. Tyrosine phosphorylation and TGF-alpha mRNA accumulation in response to EGF and TGF-alpha were both inhibited by a monoclonal antibody against the EGF receptor and by the EGF receptor tyrosine kinase inhibitor RG50864, demonstrating the involvement of the tyrosine kinase activity of the receptor in TGF-alpha autoinduction. The monoclonal antibody inhibited keratinocyte growth and TGF-alpha autoinduction with similar potency (IC50 approximately 0.1 microgram/ml). TGF-alpha and the PKC activator tetradecanoyl phorbol 12-myristyl, 13-acetate (TPA) had similar effects on TGF-alpha steady-state mRNA levels, suggesting that PKC activation might be a downstream mediator of TGF-alpha autoinduction. However, down-regulation of more than 90% of keratinocyte PKC activity by bryostatin pretreatment abrogated the induction of TGF-alpha mRNA in response to TPA without affecting the autoinductive response or EGF-stimulated tyrosine phosphorylation. These results indicate that EGF receptor and PKC stimulate TGF-alpha gene expression by different pathways, and suggest that PKC is not required for TGF-alpha autoinduction in this system. Moreover, the fact that EGF-stimulated tyrosine phosphorylation and TGF-alpha autoinduction were not potentiated after PKC down-regulation suggests that PKC does not exert a tonic inhibitory influence on EGF receptor tyrosine kinase activity in normal human keratinocytes.  相似文献   

17.
Embryonic testis development requires the morphogenesis of cords and growth of all cell populations to allow organ formation. It is anticipated that coordination of the growth and differentiation of various cell types involves locally produced growth factors. The current study was an investigation of the hypothesis that transforming growth factor-alpha (TGF-alpha) is involved in regulating embryonic testis growth. TGF-alpha has previously been shown to function in the postnatal testis. TGF-alpha and other members of the epidermal growth factor (EGF) family act through the epidermal growth factor receptor (EGFR) to stimulate cell proliferation and tissue morphogenesis. To understand the potential actions of TGF-alpha in the embryonic testis, general cell proliferation was investigated. Characterization of cell proliferation in the rat testis throughout embryonic and postnatal development indicated that each cell type has a distinct pattern of proliferation. Germ cell growth was transiently suppressed around birth. Interstitial cell growth was high embryonically and decreased to low levels around birth. A low level of Sertoli cell proliferation was observed at the onset of testis cord formation. Sertoli cell proliferation in early embryonic development was low; the levels were high later in embryonic development and remained high until the onset of puberty. Both TGF-alpha and the EGFR were shown to be expressed in the embryonic and postnatal rat and mouse testis. Perturbation of TGF-alpha function using neutralizing antibodies to TGF-alpha on testis organ cultures dramatically inhibited the growth of both embryonic and neonatal testis. TGF-alpha antibodies had no effect on cord formation. The TGF-alpha antibody was found to be specific for TGF-alpha in Western blots when compared to EGF and heregulin. Testis growth was also inhibited by perturbation of EGFR signaling using an EGFR kinase inhibitor. Therefore, TGF-alpha appears to influence embryonic testis growth but not morphogenesis (i.e., cord formation). Treatment of embryonic testis organ cultures with exogenous TGF-alpha also perturbed development, leading to an increased proliferation of unorganized cells. Testis from EGFR and TGF-alpha knockout mice were analyzed for testis morphology. TGF-alpha knockout mice had no alterations in testis phenotype, while EGFR knockout mice had a transient decrease in the relative amount of interstitial cells before birth. Observations suggest that there may be alternate or compensatory factors that allow testis growth to occur in the apparent absence of TGF-alpha actions in the mutant mice. In summary, the results obtained suggest that TGF-alpha is an important factor in the regulation of embryonic testis growth, but other factors will also be involved in the process.  相似文献   

18.
EGF and TGF-alpha induce an equipotent stimulation of fibroblast migration and proliferation. In spite of their homologous structure and ligation by the same receptor (EGFR), we report that their respective motogenic activities are mediated by different signal transduction intermediates, with p70(S6K) participating in EGF signalling and phospholipase Cgamma in TGF-alpha signalling. We additionally demonstrate that EGF and TGF-alpha motogenic activities may be resolved into two stages: (a) cell "activation" by a transient exposure to either cytokine, and (b) the subsequent "manifestation" of an enhanced migratory phenotype in the absence of cytokine. The cell activation and manifestation stages for each cytokine are mediated by distinct matrix-dependent mechanisms: motogenetic activation by EGF requires the concomitant functionality of EGFR and the hyaluronan receptor CD44, whereas activation by TGF-alpha requires EGFR and integrin alphavbeta3. Manifestation of elevated migration no longer requires the continued presence of exogenous cytokine and functional EGFR but does require the above mentioned matrix receptors, as well as their respective ligands, i.e., hyaluronan in the case of EGF, and vitronectin in the case of TGF-alpha. In contrast, the mitogenic activities of EGF and TGF-alpha are independent of CD44 and alphavbeta3 functionality. These results demonstrate clear qualitative differences between EGF and TGF-alpha pathways and highlight the importance of the extracellular matrix in regulating cytokine bioactivity.  相似文献   

19.
人肝癌细胞表皮生长因子受体以及佛波酯对它的调度   总被引:1,自引:0,他引:1  
Using radioligand binding assay, the presence of epidermal growth factor (EGF) receptors in cells of two human liver cancer cell lines, BEL-7402 and SMMC-7721, was demonstrated. The ligand binding data were analyzed by a computer program. The dissociation constants (KD) of the ligand-receptor binding complex at equilibrium for 7402 and 7721 cells were 1.2 nM and 0.8 nM respectively, and their number of EGF receptors per cell were 6.2 x 10(4) and 2.5 x 10(4) respectively. After the treatment of cells with phorbol 12-myristate 13-acetate (PMA), no change either in the affinity or in the number of EGF receptors was found in 7721 cells. However, in the case of 7402 cells, while the number of receptors, like 7721 cells, remained unchanged, the affinity of EGF receptors displayed a time dependent modulation after PMA treatment. It dropped within the first hour to a KD value of 3.0 nM and then gradually returned to the normal control value at 48 hours or even slightly higher than normal (0.95 nM) at 96 hours of treatment. The modulation or down-regulation of EGF receptors by PMA in 7402 cells was paralleled by the simultaneous inhibition of DNA synthesis in these cells as evidenced from their reduction of 3H-TdR uptake. It is not clear what is the basis for the differences found between 7402 cells and 7721 cells in their number of EGF receptors per cell and their responsiveness to PMA treatment. It might be related to their difference in autocrine secretion of alpha-transforming growth factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
While previous studies have indicated that exogenous TGF-alpha stimulates epithelial growth, maintenance, and repair of the gut, roles of endogenous TGF-alpha are less well-defined particularly in the small bowel. The current study examined effects of TGF-alpha knockout on adult small intestinal epithelial cell proliferation, migration, apoptosis, and damage/repair response after methotrexate treatment. Compared to normal mice, TGF-alpha gene knockout did not affect crypt cell production, mitosis position, migration, and apoptosis in non-injured intestine. RT-PCR gene expression analysis revealed presence of four out of six TGF-alpha related EGF family ligands in the normal intestine, suggesting a possible functional redundancy of the EGF family in maintenance of the intestine. Although TGF-alpha gene knockout did not significantly impair the overall mucosal repair in methotrexate-induced acute damage in the small intestine, it resulted in a higher apoptotic response in the early hours following methotrexate challenge, and a delayed and reduced crypt cell proliferation during repair. Consistently, after methotrexate challenge, intestinal TGF-alpha mRNA was found to be markedly upregulated in the early hours and during repair in the wild type, and there were similar profiles in the increased expression of all other ligands (except EGF) between the wild type and knockout intestines. Therefore, despite a possible functional redundancy among the EGF family ligands in the normal small intestine, TGF-alpha may play a role in modulating the early apoptotic events and in enhancing the subsequent reparative proliferative response in the methotrexate-damaged intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号