首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Chronic emotional painful stress (EPS) in rats brought about blood pressure elevation and changes in the time-course of the heart rate under functional load (hypokinesia for 2 h). There was also an increase in the heart mass and activation of cytochromoxidase in the brain cortex and hippocamp. Chronic administration of the antioxidant F-801 for EPS prevented vegetative disorders, heart hypertrophy and elevation of oxidative activity in the brain. The role of lipid peroxidation and hypoxia in the development of abnormalities caused by neurotization is discussed.  相似文献   

2.
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390-401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H(2)O(2) [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414-419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.  相似文献   

3.
Early oxidative stress in the diabetic kidney: effect of DL-alpha-lipoic acid   总被引:10,自引:0,他引:10  
Oxidative stress is implicated in the pathogenesis of diabetic nephropathy. The attempts to identify early markers of diabetes-induced renal oxidative injury resulted in contradictory findings. We characterized early oxidative stress in renal cortex of diabetic rats, and evaluated whether it can be prevented by the potent antioxidant, DL-alpha-lipoic acid. The experiments were performed on control rats and streptozotocin-diabetic rats treated with/without DL-alpha-lipoic acid (100 mg/kg i.p., for 3 weeks from induction of diabetes). Malondialdehyde plus 4-hydroxyalkenal concentration was increased in diabetic rats vs. controls (p <.01) and this increase was partially prevented by DL-alpha-lipoic acid. F(2) isoprostane concentrations (measured by GCMS) expressed per either mg protein or arachidonic acid content were not different in control and diabetic rats but were decreased several-fold with DL-alpha-lipoic acid treatment. Both GSH and ascorbate (AA) levels were decreased and GSSG/GSH and dehydroascorbate/AA ratios increased in diabetic rats vs. controls (p <.01 for all comparisons), and these changes were completely or partially (AA) prevented by DL-alpha-lipoic acid. Superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, and NADH oxidase, but not catalase, were upregulated in diabetic rats vs. controls, and these activities, except glutathione peroxidase, were decreased by DL-alpha-lipoic acid. In conclusion, enhanced oxidative stress is present in rat renal cortex in early diabetes, and is prevented by DL-alpha-lipoic acid.  相似文献   

4.
To determine the mechanism(s) underlying enhanced oxidative stress in kidneys of salt-sensitive hypertension, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second days of life. After being weaned, male rats were assigned into four groups and treated for 2 wk with the following: vehicle + a normal sodium diet (NS, 0.4%, CON-NS), vehicle + a high-sodium diet (HS, 4%, CON-HS), CAP + NS (CAP-NS), and CAP + HS (CAP-HS). Systolic blood pressure was significantly increased in CAP-HS but not CAP-NS or CON-HS rats. Plasma and urinary 8-iso-prostaglandin F(2alpha) levels increased by approximately 40% in CON-HS and CAP-HS rats compared with their respective controls fed a NS diet (P < 0.05), and these parameters were higher in CAP-HS compared with CON-HS rats. Superoxide (O(2)(-)*) levels in the renal cortex and medulla increased by approximately 45% in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). Enhanced O(2)(-)* levels in the cortex and medulla in CAP-HS rats were prevented by preincubation of renal tissues with apocynin, a selective NAD(P)H oxidase inhibitor. Protein expression of NAD(P)H oxidase subunits, including p47(phox) and gp91(phox) in the renal cortex and medulla, was significantly increased in CAP-HS compared with CON-HS, CON-NS, and CAP-NS rats. In contrast, protein expression and activities of Cu/Zn SOD and Mn SOD were significantly increased in the renal medulla in both CAP-HS and CON-HS but in the cortex in CAP-HS rats only. Creatinine clearance decreased by approximately 45% in CAP-HS rats compared with CON-HS, CON-NS, and CAP-NS rats (P < 0.05). O(2)(-)* levels in the renal cortex of CAP-HS rats negatively correlated with creatinine clearance (r = -0.76; P < 0.001). Therefore, regardless of enhanced SOD activity to suppress oxidative stress, increased oxidative stress in the kidney of CAP-treated rats fed a HS diet is likely the result of increased expression and activities of NAD(P)H oxidase, which may contribute to decreased renal function and increased blood pressure in these rats. Our results suggest that sensory nerves may play a compensatory role in attenuating renal oxidative stress during HS intake.  相似文献   

5.
In order to further investigate the mechanism regulating the control of mitochondrial respiration by thyroid hormones, the effect of the hyperthyroidism on the kinetic characteristics of cytocrome c oxidase in rat heart mitochondria was studied. Mitochondrial preparations from both control and hyperthyroid rats had equivalent Km values for cytochrome c, while the maximal activity of cytochrome oxidase was significantly increased (by around 30%) in mitochondrial rats. This enhanced activity of cytochrome oxidase was associated to a parallel increases in mitochondrial State 3 respiration. The hormone treatment resulted in a decrease in the flux control coefficient of the oxidase. The enhanced activity of cytochrome oxidase in hyperthyroid rats does not appear to be dependent on an increases in the mass of this enzyme complex in that the heme aa3 content was equivalent in both hyperthyroid and control preparations. The Arrhenius plot characteristics differ for cytochrome oxidase activity in mitochondria from hyperthyroid rats as compared with control rats in the breakpoint of the biphasic plot is shifted to a lower temperature. Cardiolipin content was significantly increased in mitochondrial preparations from hyperthyroid rats, while there were no significant alterations in the fatty acid composition of cardiolipin of control and hyperthyroid preparations. The results support the conclusion that the enhanced cytochrome oxidase activity in heart mitochondrial preparations from hyperthyroid rats is due to a specific increase in the content of cardiolipin.  相似文献   

6.
Pargyline, an antihypertensive agent and monoamine oxidase inhibitor, induces hepatic GSH depletion and hepatotoxicity in vivo in rats [E.G. De Master, H.W. Sumner, E. Kaplan, F. N. Shirota, H.T. Nagasawa, Toxicol. Appl. Pharmacol. 65 (1982) 390–401]. Propargyl alcohol (2-propyn-1-ol), because of its structural similarity to allyl alcohol, was thought to be activated by alcohol dehydrogenase. However, it is a poor substrate compared to allyl alcohol and it was therefore proposed that propargyl alcohol-induced liver injury involved metabolic activation by catalase/H2O2 [E.G. De Master, T. Dahlseid, B. Redfern, Chem. Res. Toxicol. 7 (1994) 414–419]. In the following we showed that; (1) propargyl alcohol-induced cytotoxicity was markedly enhanced in CYP 2E1-induced hepatocytes and prevented by various CYP 2E1 inhibitors but was only slightly affected when alcohol dehydrogenase was inhibited with methylpyrazole/DMSO or when catalase was inactivated with azide or aminotriazole, (2) hepatocyte GSH depletion preceded cytotoxicity and was inhibited by cytochrome P450 inhibitors but not by catalase/alcohol dehydrogenase inhibitors. GSH conjugate formation during propargyl alcohol metabolism by microsomal mixed function oxidase in the presence of GSH was also prevented by anti-rat CYP 2E1 or CYP 2E1 inhibitors, (3) cytotoxicity was prevented when lipid peroxidation was inhibited with antioxidants, desferoxamine (ferric chelator) or dithiothreitol. Propargyl alcohol-induced cytotoxicity and reactive oxygen species formation were markedly increased in GSH-depleted hepatocytes. All of this evidence suggests that propargyl alcohol-induced cytotoxicity involves metabolic activation by CYP 2E1 to form propiolaldehyde that causes hepatocyte lysis as a result of GSH depletion and lipid peroxidation.  相似文献   

7.
This study was designed to examine the effects of grape seed proanthocyanidins (GSP) against myocardial injury (MI) induced by isoproterenol (ISO), in a rat model. Induction of rats with ISO (85 mg/kg body weight, subcutaneously) for 2 days resulted in a significant decrease in the activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). The activities of lysosomal enzymes (alpha-d-glucuronidase, alpha-d-N-acetylglucosaminidase, cathepsin-D, acid phosphatases and alpha-d-galactosidase) were increased significantly in the heart and serum of ISO-induced rats. The prior administration of GSP for 6 days a week for 5 weeks significantly increased the activities of mitochondrial and respiratory chain enzymes and significantly decreased the activities of lysosomal enzymes in the heart tissues of ISO-induced rats, which proves the stress stabilizing action of GSP. Oral administration of grape seed proanthocyanidins alone (50, 100 and 150 mg/kg) to normal rats did not show any significant effect in all the parameters studied. These biochemical functional alterations were supported by the macroscopic enzyme mapping assay of ischemic myocardium. Thus, this study shows that 100 and 150 mg/kg of GSP gives protection against ISO-induced MI and demonstrates that GSP has a significant effect in the protection of heart.  相似文献   

8.
The effect of exercise training on brown adipose tissue (BAT) thermogenesis was studied by measuring cytochrome oxidase activity, as a marker of mitochondrial abundance, mitochondrial guanosine-5'-diphosphate (GDP) binding, as an indicator of thermogenic activity and oxygen consumption in BAT in ovariectomized (OVX) obese rats and sham-operated rats. Six-week exercise training significantly suppressed body weight gain in OVX rats to the level of sedentary control rats, although food intake in exercise trained OVX rats increased more than in the sedentary OVX rats. Exercise training increased cytochrome oxidase activity, mitochondrial GDP binding and oxygen consumption in BAT in OVX rats, which were reduced in a sedentary condition, as well as in the control rats. These results suggest that exercise training potentiates BAT thermogenesis, which may contribute to the reduction of body weight in OVX obese rats.  相似文献   

9.
Changes of vegetative reactions and cytochrome oxidase (CChO) activity in various brain structures were studied in rats during neurotization. One week neurotization led to an increase of arterial blood pressure, respiration rate, cardiac stroke volume and heart rate. In three weeks of neurotization there was a decrease of stroke volume accompanied by an increase of heart rate and some decrease or respiration rate leading to a reduction of oxygen consumption. Neurotization during one and especially three weeks elicited an enhancement of CChO activity in various brain areas, more pronounced in the cerebral cortex. A four week "rest" after neurotization during three weeks normalized the CChO activity. CChO activation during neurotization is supposed to be one of the mechanisms of adaptation to hypoxia accompanying neurosis.  相似文献   

10.
The effect of chronic alcohol consumption on steady-state kinetic characteristics of cytochrome oxidase in rat liver was studied using submitochondrial particles prepared from ethanol-fed and control rats. Preparations from both control and alcoholic rats had equivalent apparent Km values for cytochrome c of 13 microM in the presence of phenazine methosulfate or 19 microM with N,N,N',N'-tetramethylphenylene diamine as oxidation-reduction mediators at physiological ionic strength. Both preparations showed comparable stimulation (approx. 3-fold) of oxidase activity following detergent solubilization of the membrane and similar temperature dependence for oxidase activity. Under all conditions, preparations from alcohol-fed rats displayed 30 to 50% lower rats of cytochrome oxidase activity per unit membrane protein than those from control rats. The diminution in specific activity per mg protein was accompanied by a similar decline in heme aa3 content, as has been noted in previous studies. When expressed on a turnover number basis, the molecular activity of cytochrome oxidase (natoms O/min per nmol heme a) was equivalent in both alcoholic and control preparations. The results indicate that the intrinsic kinetic characteristics of cytochrome oxidase are not changed by alcohol consumption. The data suggest that the characteristic decline in heme aa3 content and cytochrome oxidase specific activity seen in ethanol-fed rats does not arise from alterations in the accessibility of the oxidase towards cytochrome c, or from changes in bulk phase lipid composition or physical properties. The results support the conclusion that ethanol consumption decreases the membrane content of functionally active oxidase molecules, but does not change the catalytic properties of these oxidase molecules.  相似文献   

11.
Up-regulation of heme oxygenase (HO-1) by either cobalt protoporphyrin (CoPP) or human gene transfer improves vascular and renal function by several mechanisms, including increases in antioxidant levels and decreases in reactive oxygen species (ROS) in vascular and renal tissue. The purpose of the present study was to determine the effect of HO-1 overexpression on mitochondrial transporters, cytochrome c oxidase, and anti-apoptotic proteins in diabetic rats (streptozotocin, (STZ)-induced type 1 diabetes). Renal mitochondrial carnitine, deoxynucleotide, and ADP/ATP carriers were significantly reduced in diabetic compared with nondiabetic rats (p < 0.05). The citrate carrier was not significantly decreased in diabetic tissue. CoPP administration produced a robust increase in carnitine, citrate, deoxynucleotide, dicarboxylate, and ADP/ATP carriers and no significant change in oxoglutarate and aspartate/glutamate carriers. The increase in mitochondrial carriers (MCs) was associated with a significant increase in cytochrome c oxidase activity. The administration of tin mesoporphyrin (SnMP), an inhibitor of HO-1 activity, prevented the restoration of MCs in diabetic rats. Human HO-1 cDNA transfer into diabetic rats increased both HO-1 protein and activity, and restored mitochondrial ADP/ATP and deoxynucleotide carriers. The increase in HO-1 by CoPP administration was associated with a significant increase in the phosphorylation of AKT and levels of BcL-XL proteins. These observations in experimental diabetes suggest that the cytoprotective mechanism of HO-1 against oxidative stress involves an increase in the levels of MCs and anti-apoptotic proteins as well as in cytochrome c oxidase activity.  相似文献   

12.
The effect of a single administration of ethanol (2 g/kg body weight) on hepatic and renal diamine oxidase activity was studied in fasted rats. Diamine oxidase activity significantly increased in liver and kidney 6 h after ethanol intubation. Pyrazole (an inhibitor of alcohol dehydrogenase), cycloheximide or actinomycin D (inhibitors of macromolecular syntheses), as well as prior adrenalectomy, prevented the ethanol-induced stimulation of diamine oxidase in the liver, but not in the kidney. The results demonstrated that the enhancement of diamine oxidase activity in the liver was due to an enzyme induction mediated by alcohol metabolism as well as by adrenals. In contrast, the stimulation of diamine oxidase activity in the kidney did not depend on synthesis of new enzyme molecules and was not mediated by ethanol metabolism or adrenal hormones.  相似文献   

13.
Moderate exercise in a treadmill (10, 15, and 20 cm/s, for 5 min each, weekly) from 28 to 78 wk of age extended male and female mice life span by 19 and 9% accompanied by 36 and 13% and 13 and 9% increased performance in behavioral assays (tightrope and T-maze tests) at 52 wk of age. Moderate exercise significantly decreased the aging-associated development of oxidative stress by preventing 1) the increase in protein carbonyls and thiobarbituric acid-reactive substances contents of submitochondrial membranes; 2) the decrease in antioxidant enzyme activities (Mn- and Cu,Zn-superoxide dismutase and catalase); and 3) the decrease in mitochondrial NADH-cytochrome-c reductase and cytochrome oxidase activities observed at 52 wk of mice age in brain, heart, liver, and kidney. These effects were no longer significant at 78 wk of age in mice. Moderate exercise, started at young age in mice, increased life span, decreased oxidative stress, and prevented the decline of cytochrome oxidase activity and behavioral performance at middle age but not at old age.  相似文献   

14.
Bile duct ligation (BDL)-treated rats exhibit cholestasis and increased systemic and brain oxidative stress. Activation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and disruption of the blood-brain barrier (BBB) are implicated as the pathogenetic mechanisms of brain dysfunction in BDL-treated adult rats. Young rats underwent sham ligation or BDL at day 17 for 2 or 4weeks. Treatment group rats were administered melatonin between day 17 and 45. We found a progressive increase in prefrontal cortex NADPH-dependent superoxide anion (O(2)(-)) production and increased expression of NADPH oxidase subunits in either the prefrontal cortex or the hippocampus in BDL-treated young rats. In addition, expression of intercellular adhesion molecule-1 (ICAM) and tissue plasminogen activator (t-PA) genes were increased in either the prefrontal cortex or the hippocampus. Prefrontal cortex capillary junctional complex proteins expressions including occludin, claudin-5, platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin were not altered. Melatonin lowered the prefrontal cortex NADPH-dependent O(2)(-) production and t-PA gene expression. We conclude that alterations in NADPH oxidase expression and BBB are involved in brain dysfunction in BDL-treated young rats. In addition, melatonin regulates NADPH oxidase activity and t-PA gene expression.  相似文献   

15.
Initially low level of motor search activity in test situations ("open field", maze) in rats previously grouped according to their passive behaviour with a partner-victim (Simonov method), does not essentially change after 3-week administration of phenazepam; the activity level of cytochrome oxidase in the cortex and hypothalamus is lowered. Phenazepam administration in conditions of prolonged unavoidable painful stimulation brings to a sharp increase of motor search activity and aggressive behaviour. Simultaneously the cytochrome oxidase activity increases in the same way as during a stress without phenazepam. This fact points to the independence of behavioural and biochemical effects in this case.  相似文献   

16.
4-hydroxynonenal (HNE) is a highly toxic product of lipid peroxidation (LPO). Its role in the inhibition of cytochrome c oxidase activity and oxidative modifications of mitochondrial lipids and proteins were investigated. The exposure of mitochondria isolated from rat heart to HNE resulted in a time- and concentration-dependent inhibition of cytochrome c oxidase activity with an IC50 value of 8.3 +/- 1.0 microM. Immunoprecipitation-Western blot analysis showed the formation of HNE adducts with cytochrome c oxidase subunit I. The loss of cytochrome c oxidase activity was also accompanied by reduced thiol group content and increased HNE-lysine fluorescence. Furthermore, there was a marked increase in conjugated diene formation indicating LPO induction by HNE. Fluorescence measurements revealed the formation of bityrosines and increased surface hydrophobicity of HNE-treated mitochondrial membranes. Superoxide dismutase + catalase and the HO* radical scavenger mannitol partially prevented inhibition of cytochrome c oxidase activity and formation of bityrosines. These findings suggest that HNE induces formation of reactive oxygen species and its damaging effect on mitochondria involves both formation of HNE-protein adducts and oxidation of membrane lipids and proteins by free radicals.  相似文献   

17.
Reduced brown adipose tissue thermogenesis of obese rats after ovariectomy   总被引:1,自引:0,他引:1  
Brown adipose tissue (BAT) thermogenesis was assessed by measuring mitochondrial guanosine diphosphate (GDP) binding, cytochrome oxidase activity and oxygen consumption in ovariectomized (OVX) and sham-operated rats. The food intake and body weight of OVX rats increased more than those of controls and OVX rats became obese. Mitochondrial GDP binding, as an indicator of thermogenic activity, cytochrome oxidase activity, as a marker of mitochondrial abundance, and mitochondrial respiration of BAT in OVX rats were significantly reduced compared with those in controls. And, also, even when OVX rats were restricted in food intake (pair-gained) to produce comparable changes in body weight with sham-controls, or matched in food intake (pair-fed) with sham-controls, these parameters in both pair-gained and pair-fed OVX groups were decreased markedly compared to those in sham-controls. As expected, body weight in pair-fed OVX rats increased significantly more than that in sham-controls. In response to cold exposure, these parameters of OVX rats increased as much as those of controls did. These results suggest that reduced brown adipose tissue thermogenesis might be one of the important factors that are responsible for the development of obesity after OVX.  相似文献   

18.
Although the cardiovascular morbidity and mortality induced by cigarette smoking exceed those attributable to lung cancer, the molecular basis of smoking-induced vascular injury remains unclear. To test the link between cigarette smoke, oxidative stress, and vascular inflammation, rats were exposed to the smoke of five cigarettes per day (for 1 wk). Also, isolated arteries were exposed to cigarette smoke extract (CSE; 0 to 40 microg/ml, for 6 h) in organoid culture. We found that smoking impaired acetylcholine-induced relaxations of carotid arteries, which could be improved by the NAD(P)H oxidase inhibitor apocynin. Lucigenin chemiluminescence measurements showed that both smoking and in vitro CSE exposure significantly increased vascular O(2)(*-) production. Dihydroethidine staining showed that increased O(2)(*-) generation was present both in endothelial and smooth muscle cells. CSE also increased vascular H(2)O(2) production (dichlorofluorescein fluorescence). Vascular mRNA expression of the proinflammatory cytokines IL-1beta, IL-6, and TNF-alpha and that of inducible nitric oxide synthase was significantly increased by both smoking and CSE exposure, which could be prevented by inhibition of NAD(P)H oxidase (diphenyleneiodonium and apocynin) or scavenging of H(2)O(2). In cultured endothelial cells, CSE elicited NF-kappaB activation and increased monocyte adhesiveness, which were prevented by apocynin and catalase. Thus we propose that water-soluble components of cigarette smoke (which are likely to be present in the bloodstream in vivo in smokers) activate the vascular NAD(P)H oxidase. NAD(P)H oxidase-derived H(2)O(2) activates NF-kappaB, leading to proinflammatory alterations in vascular phenotype, which likely promotes development of atherosclerosis, especially if other risk factors are also present.  相似文献   

19.
The efficiency of oxidative phosphorylation was compared between rats chronically fed with ethanol and controls. (i) Results showed that the liver mitochondria state 4 respiratory rate was strongly inhibited, while the corresponding proton-motive force was not affected; (ii) the cytochrome oxidase content and activity were decreased and (iii) the oxidative-phosphorylation yield was increased in the ethanol exposed group. Furthermore, oxidative phosphorylation at coupling site II was not affected by ethanol. Cytochrome oxidase inhibition by sodium-azide mimicked the effects of ethanol intoxication in control mitochondria. This indicates that the decrease in cytochrome oxidase activity induced by ethanol intoxication directly increases the efficiency of oxidative phosphorylation.  相似文献   

20.
An early event that occurs in response to alcohol consumption is mitochondrial dysfunction, which is evident in changes to the mitochondrial proteome, respiration defects, and mitochondrial DNA (mtDNA) damage. S-adenosylmethionine (SAM) has emerged as a potential therapeutic for treating alcoholic liver disease through mechanisms that appear to involve decreases in oxidative stress and proinflammatory cytokine production as well as the alleviation of steatosis. Because mitochondria are a source of reactive oxygen/nitrogen species and a target for oxidative damage, we tested the hypothesis that SAM treatment during alcohol exposure preserves organelle function. Mitochondria were isolated from livers of rats fed control and ethanol diets with and without SAM for 5 wk. Alcohol feeding caused a significant decrease in state 3 respiration and the respiratory control ratio, whereas SAM administration prevented these alcohol-mediated defects and preserved hepatic SAM levels. SAM treatment prevented alcohol-associated increases in mitochondrial superoxide production, mtDNA damage, and inducible nitric oxide synthase induction, without a significant lessening of steatosis. Accompanying these indexes of oxidant damage, SAM prevented alcohol-mediated losses in cytochrome c oxidase subunits as shown using blue native PAGE proteomics and immunoblot analysis, which resulted in partial preservation of complex IV activity. SAM treatment attenuated the upregulation of the mitochondrial stress chaperone prohibitin. Although SAM supplementation did not alleviate steatosis by itself, SAM prevented several key alcohol-mediated defects to the mitochondria genome and proteome that contribute to the bioenergetic defect in the liver after alcohol consumption. These findings reveal new molecular targets through which SAM may work to alleviate one critical component of alcohol-induced liver injury: mitochondria dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号