首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides of defined length carrying a diazirine photoaffinity label attached either to the alpha-NH2 group of the N-terminal methionine residue, or to the epsilon-NH2 group of an immediately adjacent lysine residue, were prepared in situ on Escherichia coli ribosomes in the presence of a synthetic mRNA analogue. Peptide growth was stopped simply by withholding the aminoacyl-tRNA cognate to an appropriate downstream codon. After photo-activation at 350 nm the sites of cross-linking to ribosomal RNA were determined by our standard procedures; the C-terminal amino acid of each peptide was labelled with tritium, in order to confirm whether the individual cross-linked complexes contained the expected 'full-length' peptide, as opposed to shorter products. The shortest peptides became cross-linked to sites within the 'peptidyl transferase ring' of the 23S RNA, namely to positions 2062, 2506, 2585 and 2609. However, already when the peptide was three or four residues long, a new cross-link was observed several hundred nucleotides away in another secondary structural domain; this site, at position 1781, lies within one of several RNA regions which have been implicated in other studies as being located close to the peptidyl transferase ring. Further application of this approach, combined with model-building studies, should enable the path of the nascent peptide through the large ribosomal subunit to be definitively mapped.  相似文献   

2.
As part of a programme to investigate the path of the nascent peptide through the large ribosomal subunit, peptides of different lengths (up to 30 amino acids), corresponding to the signal peptide sequence and N-terminal region of the Escherichia coli ompA protein, were synthesized in situ on E.coli ribosomes. The peptides each carried a diazirine moiety attached to their N-terminus which, after peptide synthesis, was photoactivated so as to induce cross-links to the 23S rRNA. The results showed that, with increasing length, the peptides became progressively cross-linked to sites in Domains V, II, III and I of the 23S rRNA, in a similar manner to that previously observed with a family of peptides derived from the tetracycline resistance gene. However, the cross-links to Domain III appeared at a shorter peptide length (12 aa) in the case of the ompA sequence, and an additional cross-link in Domain II (localized to nt 780-835) was also observed from this peptide. As with the tetracycline resistance sequence, peptides of all lengths were still able to form cross-links from their N-termini to the peptidyl transferase centre in Domain V. A further set of peptides (30 or 50 aa long), derived from mutants of the bacteriophage T4 gene 60 sequence, did not show the cross-links to Domain III, but their N-termini were nevertheless cross-linked to Domain I and to the sites in Domains II and V. The ability of relatively long peptides to fold back towards the peptidyl transferase centre thus appears to be a general phenomenon.  相似文献   

3.
Kim DF  Green R 《Molecular cell》1999,4(5):859-864
The aminoacyl (A site) tRNA analog 4-thio-dT-p-C-p-puromycin (s4TCPm) photochemically cross-links with high efficiency and specificity to G2553 of 23S rRNA and is peptidyl transferase reactive in its cross-linked state, establishing proximity between the highly conserved 2555 loop in domain V of 23S rRNA and the universally conserved CCA end of tRNA. To test for base-pairing interactions between 23S rRNA and aminoacyl tRNA, site-directed mutations were made at the universally conserved nucleotides U2552 and G2553 of 23S rRNA in both E. coli and B. stearothermophilus ribosomal RNA and incorporated into ribosomes. Mutations at G2553 resulted in dominant growth defects in E. coli and in decreased levels of peptidyl transferase activity in vitro. Genetic analysis in vitro of U2552 and G2553 mutant ribosomes and CCA end mutant tRNA substrates identified a base-pairing interaction between C75 of aminoacyl tRNA and G2553 of 23S rRNA.  相似文献   

4.
Protein L23 from the ribosome of Escherichia coli is the primary ribosomal product cross-linked to affinity-labelled puromycin; it lies, therefore, within the A-site domain of the peptidyl transferase centre on the 50 S subunit. We have characterized this functional domain by isolating and sequencing the RNA binding site of protein L23; it consists of two main fragments of 25 and 105 nucleotides that strongly interact and are separated by 172 nucleotides in the primary sequence. The higher-order structure of the RNA moiety was probed by chemical reagents, and by single-strand and double-strand-specific ribonucleases; a secondary structural model and a tertiary structural interaction are proposed on the basis of these data that are compatible with phylogenetic sequence comparisons.Several nucleotides exhibited altered chemical reactivity, both lower and higher, in the presence of protein L23, thereby implicating a large proportion of the RNA structure in the protein binding. The sites were located mainly at the extremities of the helices and at nucleotides that were putatively bulged out from the helices.The RNA moiety and an adjacent excised fragment contain several highly conserved sequences and a modified adenosine. Such sequences constitute important functional domains of the RNA and may contribute to the putative role of this RNA region in the peptidyl transferase centre.  相似文献   

5.
The peptidyl transferase center (PTC), present in the domain V of 23S rRNA of bacteria can act as a general protein folding modulator. Any general function of a nucleic acid polymer (DNA or RNA) is always related to specific sequence/sequences. The ribosome mediated protein folding also involves a specific interaction between the nucleotides of peptidyl transferase center and the amino acids of an unfolded protein. In this article the mechanism of rRNA assisted protein folding and its significance in the light of high resolution crystal structure of ribosome are discussed.  相似文献   

6.
We identified a short RNA fragment, complementary to the Escherichia coli 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), which when expressed in vivo results in the suppression of UGA nonsense mutations in two reporter genes. Neither UAA nor UAG mutations, examined at the same codon positions, were suppressed by the expression of this antisense rRNA fragment. Our results suggest that a stable phylogenetically conserved hairpin at nucleotides 736 to 760 in 23S rRNA, which is situated close to the peptidyl transferase center, may participate in one or more specific interactions during peptide chain termination.  相似文献   

7.
The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.  相似文献   

8.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.  相似文献   

9.
G Steiner  E Kuechler    A Barta 《The EMBO journal》1988,7(12):3949-3955
Photo-reactive 3-(4'-benzoylphenyl)propionyl-Phe-tRNA bound to the A- or the P-site was crosslinked to 23S RNA upon irradiation at 320 nm. The sites of reaction were identified as U-2584 and U-2585 at the A-site and A-2451 and C-2452 at the P-site. Minor crosslinks from both sites were observed at nucleotides A-2503 to U-2506. All sites identified lie in close proximity according to the secondary structure model and constitute part of the highly conserved loop region of domain V. Antibiotics known to inhibit peptidyl transferase activity had a pronounced effect on photo-crosslinking. In addition, tetracycline was also shown to photo-crosslink to this region. These experiments permit a dissection of the peptidyl transferase region on the 23S RNA into two distinct areas for the A- and P-site.  相似文献   

10.
The peptidyl transferase center, present in domain V of 23S rRNA of eubacteria and large rRNA of plants and animals, can act as a general protein folding modulator. Here we show that a few specific nucleotides in Escherichia coli domain V RNA bind to unfolded proteins and, as shown previously, bring the trapped proteins to a folding-competent state before releasing them. These nucleotides are the same for the proteins studied so far: bovine carbonic anhydrase, lactate dehydrogenase, malate dehydrogenase, and chicken egg white lysozyme. The amino acids that interact with these nucleotides are also found to be specific in the two cases tested: bovine carbonic anhydrase and lysozyme. They are either neutral or positively charged and are present in random coils on the surface of the crystal structure of both the proteins. In fact, two of these amino acid-nucleotide pairs are identical in the two cases. How these features might help the process of protein folding is discussed.  相似文献   

11.
12.
The 23S rRNA nucleotides 2604-12 and 2448-58 fall within the central loop of domain V, which forms a major part of the peptidyl transferase center of the ribosome. We report the synthesis of radioactive, photolabile 2'-O-methyloligoRNAs, PHONTs 1 and 2, complementary to these nucleotides and their exploitation in identifying 50S ribosomal subunit components neighboring their target sites. Photolysis of the 50S complex with PHONT 1, complementary to nts 2604-12, leads to target site-specific photoincorporation into protein L2 and 23S rRNA nucleotides A886, Alpha1918, A1919, G1922-C1924, U2563, U2586, and C2601. Photolysis of the 50S complex with PHONT 2, complementary to nts 2448-58, leads to target site-specific probe photoincorporation into proteins L2, L3, one or more of proteins L17, L18, L21, and of proteins L9, L15, L16, and 23S rRNA nucleotides C2456 and psi2457. Chemical footprinting studies show that 2'-O-methyloligoRNA binding causes little distortion of the peptidyl transferase center but do provide suggestive evidence for the location of flexible regions within 23S rRNA. The significance of these results for the structure of the peptidyl transferase center is considered.  相似文献   

13.
14.
The ribosome is the ribonucleoprotein particle responsible for translation of genetic information into proteins. The RNA component of the ribosome has been implicated as the catalytic entity for peptide bond formation based on protease resistance and structural data indicating an all-RNA active site. Nevertheless, peptidyl transfer by ribosomal RNA (rRNA) alone has not been demonstrated. In an attempt to show such activity we generated a minimal construct that comprises much of the 23S rRNA peptidyl transferase center, including the central loop and the A- and P-loops. This minimal rRNA domain was inactive in peptide bond formation under all conditions tested. The RNA was subsequently subjected to six rounds of in vitro selection designed to enrich for this activity. The result was a mutated rRNA sequence that could catalyze the covalent linkage of an A-site and P-site substrate; however, the product did not contain a peptide bond. The current study is an example of an in vitro derived alternate function of rRNA mutants and illustrates the evolutionary possibility that the protoribosome may have used amino acids as substrates before it gained the ability to join them into peptides. Though peptidyl transferase activity in the absence of protein remains elusive, the ease with which alternate catalytic activity was selected from rRNA with a small number of mutations suggests that rRNA may have inherent activity. This study represents a step on the path toward isolating that native activity. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users. [Reviewing Editor: Dr. Niles Lehman]  相似文献   

15.
A Barta  E Kuechler 《FEBS letters》1983,163(2):319-323
Upon irradiation, 3-[4-benzoylphenyl]propionyl-PhetRNA bound to the P-site of poly(U)-primed ribosomes is exclusively cross-linked to 23S RNA. It is shown that the photoreaction only occurs with pyrimidine nucleotides. The site of the cross-link is located within an 11S RNA fragment, which comprises the 1100 nucleotides at the 3'-end of 23S RNA. The cross-linked Phe tRNA derivative is still functionally active in peptide bond formation. The site labelled on the 11S fragment is therefore an integral part of the peptidyltransferase centre.  相似文献   

16.
Catalysis of peptide bond formation in the peptidyl transferase center is a major enzymatic activity of the ribosome. Mutations limiting peptidyl transferase activity are mostly lethal. However, cellular processes triggered by peptidyl transferase deficiency in the bacterial cell are largely unknown. Here we report a study of the lethal G2061C mutant of Escherichia coli 23S ribosomal RNA (rRNA). The G2061C mutation completely impaired the puromycin reaction and abolished formation of the active firefly luciferase in an in vitro translation system, while poly(U)- and short synthetic mRNA-directed peptidyl transferase reaction with aminoacylated tRNAs in vitro was seemingly unaffected. Study of the cellular proteome upon expression of the 23S rRNA gene carrying the G2061C mutation compared to cells expressing wild-type 23S rRNA gene revealed substantial differences. Most of the observed effects in the mutant were associated with reduced expression of stress response proteins and particularly proteins associated with the ppGpp-mediated stringent response.  相似文献   

17.
We report the synthesis of a radioactive, photolabile 2'-O-methyloligoRNA probe, 2258-53/52(SAz)-48, PHONT1, and its exploitation in identifying 23S rRNA nucleotides neighboring the so-called 'P-loop'. The probe is complementary to nt 2248-2258 in Escherichia coli 50S subunits. PHONT1 contains a p-azidophenacyl group attached to a phosphorothioate bridge between the nucleotides complementary to the positions 2252-2253, such that the photogenerated nitrene is maximally 17-19 A from 23S RNA nucleotides G2252 and G2253. PHONT1 binds to the 50S subunit, and photoincorporates within or immediately adjacent to its target site, as well as into several nucleotides falling between G2357 and A2430. The significance of these results for the structure of the peptidyl transferase center is considered. The PHONT approach is generally applicable to studies of complex RNA-containing molecules.  相似文献   

18.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

19.
Two chloramphenicol resistance mutations were isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Both mutations also confer resistance to 14-atom lactone ring macrolide antibiotics, but they do not confer resistance to 16-atom lactone ring macrolide antibiotics or other inhibitors of the large ribosomal subunit. Classic genetic and recombinant DNA methods were used to map the two mutations to 154-base-pair regions of the 23S RNA genes. DNA sequencing of these regions revealed that chloramphenicol-erythromycin resistance results from a guanine-to-adenine transition at position 2057 of the 23S RNA genes of both independently isolated mutants. These mutations affect a region of 23S RNA strongly implicated in peptidyl transfer and known to interact with a variety of peptidyl transferase inhibitors.  相似文献   

20.
Amino acids are polymerized into peptides in the peptidyl transferase center of the ribosome. The nascent peptides then pass through the exit tunnel before they reach the extraribosomal environment. A number of nascent peptides interact with the exit tunnel and stall elongation at specific sites within their peptide chain. Several mutational changes in RNA and protein components of the ribosome have previously been shown to interfere with pausing. These changes are localized in the narrowest region of the tunnel, near a constriction formed by ribosomal proteins L4 and L22. To expand our knowledge about peptide-induced pausing, we performed a comparative study of pausing induced by two peptides, SecM and a short peptide, CrbCmlA, that requires chloramphenicol as a coinducer of pausing. We analyzed the effects of 15 mutational changes in L4 and L22, as well as the effects of methylating nucleotide A2058 of 23S rRNA, a nucleotide previously implicated in pausing and located close to the L4-L22 constriction. Our results show that methylation of A2058 and most mutational changes in L4 and L22 have differential effects on pausing in response to CrbCmlA and SecM. Only one change, a 6-amino-acid insertion after amino acid 72 in L4, affects pausing in both peptides. We conclude that the two peptides interact with different regions of the exit tunnel. Our results suggest that either the two peptides use different mechanisms of pausing or they interact differently but induce similar inhibitory conformational changes in functionally important regions of the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号