首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

2.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

3.
4.
Gracilaria tenuistipitata Zhang et Xia was cultured for 15 d at low, normal and high inorganic carbon concentrations under constant light, temperature and nutrient conditons. Carbonic anhydrase (CA; EC 4.2.1.1.) activity, ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco; EC 4.1.1.39) content, pigment content and C/N ratio were measured, and also the photosynthesis and growth rates. Both Rubisco content and CA activity increased under conditions of low inorganic carbon (Ci) but decreased at high Ci with respect to the control. The amount of pigments declined considerably at high Ci and was slightly higher at low Ci. The maximum rate of photosynthesis and the photosynthetic efficiency increased in low Ci and the opposite was found at high Ci concentration. The effects of Ci concentration on maximum rate of photosynthesis and photosynthetic efficiency are discussed in relation to the variation in pigment and Rubisco contents and CA activity. The data indicate that Ci may be an important factor controlling the photosynthetic physiology of G. tenuistipitata with regard, not only to the enzymes of Ci metabolism, but also to the pigment content.Abbreviations APSmax maximum apparent photosynthetic rate - CA carbonic anhydrase - Chl chlorophyll - Ci inorganic carbon - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work has been supported by grants No. PB91-0962 and No. MAR90-0365 from Spanish Direction for Science and Technology (DIGICYT). M.J. G-S holds a fellowship from the DIGICYT.  相似文献   

5.
6.
When photoheterotrophic Euglena gracilis Z Pringsheim was subjected to nitrogen (N)-deprivation, the abundant photosynthetic enzyme ribulose-1,5-bis-phosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) was rapidly and selectively degraded. The breakdown began after a 4-h lag period and continued for a further 8 h at a steady rate. After 12 h of starvation, when the amount of Rubisco was reduced to 40%, the proteolysis of this enzyme slowed down while degradation of other proteins started at a similar pace. This resulted in a decline of culture growth, chloroplast disassembly — as witnessed by chlorophyll (Chl) loss — and cell bleaching. Experiments with spectinomycin, an inhibitor of chloroplastic translation, indicated that there was an absolute increase in the rate of Rubisco degradation in the N-deprived culture as compared with control conditions, where no significant carboxylase breakdown was detected. Oxidative aggregation of Rubisco (as detected by non-reductive electrophoresis) and association of the enzyme to membranes increased with time of N-starvation. Fluorescent labeling of oxidized cysteine (Cys) residues with monobromobimane indicated a progressive oxidation of Cys throughout the first hours of N-deprivation. It is concluded that Rubisco acts as an N store in Euglena, being first oxidized, and then degraded, during N-starvation. The mobilization of Rubisco allows sustained cell growth and division, at almost the same rate as the control (non-starved) culture, during 12 h of N-deprivation. Afterwards, breakdown is extended to other photosynthetic structures and the whole chloroplast is dismantled while cell growth is greatly reduced.Abbreviations Chl chlorophyll - Cys cysteine - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate We thank Drs. Pablo Vera and Ismael Rodrigo (Univ. Politécnica, Valencia, Spain) for advice and facilities in raising and collecting the anti-Rubisco serum. This work was supported by grants PB87-0353 and PB92-0821 of DGICYT and by a fellowship of the Spanish Ministerio de Educación y Ciencia (awarded to C.G.-F.).  相似文献   

7.
M. Viro  K. Kloppstech 《Planta》1980,150(1):41-45
The expression of genes in particular for light-harvesting chlorophyll a/b protein (LHCP) and ribulose-1,5-bisphosphate carboxylase (RuBPCase) has been studied in the developing barley leaf. This has been done by analysis of the occurrence of both proteins within the different regions (1 to 6, beginning from the base) of the primary 7-day-old leaf. It has been found that LHCP already appears in the base of the leaf, whereas RuBPCase is primarily expressed in the apical expanding part of the leaf. The distribution of the mRNAs for both proteins within this gradient is in accordance with that of the proteins themselves, indicating that gene expression is not regulated at the level of translation in both cases. The poly(A) mRNA for LHCP occurs mainly in the basic sections 2 and 3, whereas that for RuBPCase is found throughout the leaf but primarily in the apical sections of the leaf.Abbreviations LHCP light-harvesting chlorophyll a/b protein - RuBPCase ribulose-1,5-bisphosphate carboxylase - TCA trichloroacetic acid  相似文献   

8.
The short-term, in-vivo response to elevated CO2 of ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39) activity, and the pool sizes of ribulose 1,5-bisphosphate, 3-phosphoglyceric acid, triose phosphates, fructose 1,6-bisphosphate, glucose 6-phosphate and fructose 6-phosphate in bean were studied. Increasing CO2 from an ambient partial pressure of 360–1600 bar induced a substantial deactivation of RuBPCase at both saturating and subsaturating photon flux densities. Activation of RuBPCase declined for 30 min following the CO2 increase. However, the rate of photosynthesis re-equilibrated within 6 min of the switch to high CO2, indicating that RuBPCase activity did not limit photosynthesis at high CO2. Following a return to low CO2, RuBPCase activation increased to control levels within 10 min. The photosynthetic rate fell immediately after the return to low CO2, and then increased in parallel with the increase in RuBPCase activation to the initial rate observed prior to the CO2 increase. This indicated that RuBPCase activity limited photosynthesis while RuBPCase activation increased. Metabolite pools were temporarily affected during the first 10 min after either a CO2 increase or decrease. However, they returned to their original level as the change in the activation state of RuBPCase neared completion. This result indicates that one role for changes in the activation state of RuBPCase is to regulate the pool sizes of photosynthetic intermediates.Abbreviations and symbols A net CO2 assimilation rate - Ca ambient CO2 partial pressure - Ci intercellular CO2 partial pressure - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat catalytic turnover rate per RuBPCase molecule - PFD photon flux density (400 to 700 nm on an area basis) - PGA 3-phosphoglyceric acid - Pi orthophosphate - RuBP ribulose 1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39)  相似文献   

9.
While deep within the maternal tissues (pods and testa), cotyledons of the bean (Phaseolus vulgaris L.) green and the plastids differentiate as chloroplasts. At the time of seed maturation the chloroplasts dedifferentiate and the green color is lost. We have used Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and chlorophyll to study chloroembryo development. Chlorophyll levels and Rubisco activity increase early in embryonic development then decline as the cotyledons enter the maturation phase. Rubisco accumulation follows a strong temporal pattern over the course of embryo development, and furthermore, occurs in total darkness. Therefore, accumulation of Rubisco during embryogenesis may occur in response to developmental signals. In embryos developed in total darkness, Rubisco accumulation was uncoupled from chlorophyll accumulation. Exposure of isolated cotyledons to abscisic acid (ABA) resulted in loss of chlorophyll and decline in Rubisco levels comparable to those seen in normal embryogenesis. This indicates that the decline in Rubisco in chloroembryos in vivo results from factors such as ABA that signal the onset of maturation. The results show that ABA not only enhances the accumulation of some proteins (e.g. storage proteins), but also depresses the accumulation of others during embryogeny.Abbreviations Rubisco ribulose-1,5-bisphosphate-carboxylase/oxygenase (EC 4.1.1.39) - LSU large subunit of Rubisco - SSU small subunit of Rubisco - ABA abscisic acid - FW fresh weight  相似文献   

10.
Monocotyledonous leaves subjected to osmotica used for protoplast isolation accumulate a massive amount of putrescine (Put), lose chlorophyll and senesce rapidly. Treatment with spermidine (Spd) or spermine (Spm) prevents the loss of chlorophyll, indicating preservation of the thylakoid membranes at the site of the chlorophyll-protein complexes. Using several recently produced antibody probes, the effects on the stabilization of thylakoid membranes of applying either difluoromethylarginine (DFMA), a specific inhibitor of putrescine synthesis via arginine decarboxylase, or the polyamines Spd, Spm, or diaminopropane (Dap) to osmotically shocked oat leaves (Avena sativa L.) have been investigated. High protein levels were maintained in thylakoid membranes of leaf tissue incubated in the dark in the presence of 0.6 M sorbitol when pretreated with DFMA. After 48 h incubation, the level of the thylakoid protein D1, at the core of photosystem II, was higher in the DFMA-pretreated leaves as was the stromal protein ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco; as indicated by the level of large subunits). Applications of Spd, Spm or Dap were effective in retarding the loss of D1, D2 and cytochrome f from the thylakoid membranes as well as Rubisco large subunits and chlorophyll from the leaf tissue. The effects of polyamine applications may be mediated through Dap since most of the added Spd or Spm was converted to Dap within 6 h. The possible mechanisms of action of polyamine applications and DFMA-pretreatment on stabilizing the composition of the thylakoid membrane are also discussed.Abbreviations Cyt cytochrome - Dap diaminopropane - DFMA DL--difluoromethylarginine - LSU large subunit (of Rubisco) - Put putrescine - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - Spd spermidine - Spm spermine - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis This research was supported by the Agricultural and Food Research Council and by the British-Spanish joint research programme Acción Integrade HB-079 (R.T.B. and A.F.T.), British Council SPN/BAR/991 (R.T.B.) and Comision Interministerial de Cienica y Tecnologia 90-130 (A.F.T.). We thank Merrell Dow Research Center (Cincinnati, Ohio) for the gift of DFMA and Teresa Capell and Xavier Figueras (Univ. Barcelona) for help and suggestions.  相似文献   

11.
J. R. Evans 《Planta》1986,167(3):351-358
Photosynthesis in two cultivars of Triticum aestivum was compared with photosynthesis in two lines having the same nuclear genomes but with cytoplasms derived from T. boeoticum. The in-vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) isolated from lines with T. boeoticum cytoplasm was only 71% of that of normal T. aestivum. By contrast, the RuBPCase activities calculated from the CO2-assimilation rate at low partial pressures of CO2, p(CO2), were the same for all lines for a given RuBPCase content. This indicates that both types of RuBPCase have the same turnover numbers in-vivo of 27.5 mol CO2·(mol enzyme)–1·s–1 (23°). The rate of CO2 assimilation measured at normal p(CO2), p a =340 bar, and high irradiance could be quantitatively predicted from the amount of RuBPCase protein. The maximum rate of RuBP regeneration could also predict the rate of CO2 assimilation at normal ambient conditions. Therefore, the maximum capacities for RuBP carboxylation and RuBP regeneration appear to be well-balanced for normal ambient conditions. As photosynthetic capacity declined with increasing leaf age, the capacities for RuBP carboxylation and RuBP regeneration declined in parallel.Abbreviations PAR photosynthetically active radiation - RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

12.
Summary This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons and in the glia.1. The activities of 5-reductase (the enzyme that converts testosterone into dihydrotestosterone; DHT) and of 3-hydroxy steroid dehydrogenase (the enzyme that converts DHT into 5-androstane-3,17-diol; 3-diol) were first evaluated in primary cultures of neurons, oligodendrocytes, and type-1 and type-2 astrocytes, obtained from the fetal or neonatal rat brain. The formation of DHT and 3-diol was evaluated incubating the different cultures with labeled testosterone or labeled DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, also type-2 astrocytes and oligodendrocytes possess considerable 5-reductase activity. A completely different localization was observed for 3-hydroxysteroid dehydrogenase; the formation of 3-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3-diol is formed in very low yields by neurons, type-2 astrocytes, and oligodendrocytes. Moreover, the results indicate that, in type 1 astrocytes, both 5-reductase and 3-HSD are stimulated by coculture with neurons and by the addition of neuron-conditioned medium, suggesting that secretory products released by neurons might intervene in the control of glial cell function.2. Subsequently it was shown that, similarly to what happens when testosterone is used as the substrate, 5-reductase, which metabolizes progesterone into 5-pregnane-3,20-dione, (DHP), shows a significantly higher activity in neurons than in glial cells; however, also type-1 and type-2 astrocytes as well as oligodendrocytes possess some ability to 5-reduce progesterone. On the contrary, 3-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5-pregnane-3-ol-20-one (THP), appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3-hydroxysteroid dehydrogenase activity, even if this is statistically lower than that present in type-1 astrocytes. The existence of isoenzymatic forms of the enzymes involved in androgen and progesterone metabolism is discussed.  相似文献   

13.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) activase were used to examine the relationship between CO2-assimilation rate, Rubisco carbamylation and activase content. Plants used were those members of the r1 progeny of a primary transformant with two independent T-DNA inserts that could be grown without CO2 supplementation. These plants had from < 1% to 20% of the activase content of control plants. Severe suppression of activase to amounts below 5% of those present in the controls was required before reductions in CO2-assimilation rate and Rubisco carbamylation were observed, indicating that one activase tetramer is able to service as many as 200 Rubisco hexadecamers and maintain wild-type carbamylation levels in vivo. The reduction in CO2-assimilation rate was correlated with the reduction in Rubisco carbamylation. The anti-activase plants had similar ribulose-1,5-bisphosphate pool sizes but reduced 3-phosphoglycerate pool sizes compared to those of control plants. Stomatal conductance was not affected by reduced activase content or CO2-assimilation rate. A mathematical model of activase action is used to explain the observed hyperbolic dependence of Rubisco carbamylation on activase content.Abbreviations CA1P 2-carboxyarabinitol-1-phosphate - Pipa intercellular, ambient partial pressure of CO2 - PGA 3-phospho-glycerate - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SSU small subunit of Rubisco  相似文献   

14.
Summary As part of our programme directed at the development of enzyme inhibitors based on transition-state mimics, we discovered in the early 1980s that P3-P3 fragments of human fibrinogen A, containing the ketomethylene isostere Arg--[COCH2]Gly at P1-P1, were potent inhibitors of thrombin. Such low-molecular-weight inhibitors are expected to be clinically useful as anticoagultant drugs. In our more recent investigations, the P1-P1 moiety has been replaced with various arginine or lysine ketones. The resulting compounds showed the following order of thrombin inhibitory potency: -ketoesters > fluoroketones >alkoxymethylketones > difluoro--ketoamides >-ketoesters >alkyl ketones. In contrast to all other lysine/arginine pairs studied previously, the inhibitor based on a lysine -ketoester proved superior to the corresponding arginine analogue. A possible explanation for this finding is discussed. All the highly electrophilic ketones (e.g., fluoroketones) were found to exhibit slow-binding kinetics with thrombin, which is likely to be a disadvantage in clinical use. Alkoxymethyl ketones were devoid of such behaviour and have been developed further to yield nanomolar inhibitors of low molecular weight and good selectivity for thrombin. One of these ketones was found to compare favourably with known thrombin inhibitors in anticoagulant assays. The synthesis of various types of inhibitor mentioned above is described, together with structure-activity correlations for inhibition of thrombin.  相似文献   

15.
16.
We isolated the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO SSu) from a fern,Asplenium cataractarum and determined its 34 N-terminal amino acid sequence. We obtained a cDNA clone that contains the entire coding region of the SSu from the same fern species, using synthetic oligonucleotide probes derived from the above amino acid sequence. It contains a 525 bp open reading frame capable of coding for a polypeptide with 174 amino acids, 31 bp 5′-and 206 bp 3′-noncoding regions. It was also elucidated that the precursor to the SSu contains a transit peptide of 53 amino acid residues and a mature protein of 121 residues. We compared the deduced amino acid sequence of the fern SSu with those of 11 other vascular plant species (including gymnosperms, monocots and dicots). As low as 55% homology was observed between those of a fern and seed plants. Constancy of the amino acid substitution rate in RuBisCO SSu was supported by our relative rate test. Amino acid substitution rate per year per site for RuBisCO SSu was calculated to be 0.81×10−9 assuming that the separation between pteridophytes and seed plants arose 380 million years ago.  相似文献   

17.
The distribution of A- and B-crystallin in the developing lens of human (Carnegie stages 13 to 23) and rat embryos (embryonic days E11 to 18) was examined immunohistochemically. In a human embryo at stage 13, the lens placode was already immunoreactive to B-crystallin, but not to A-crystallin. At stage 15, the lens vesicle was intensely immunoreactive both to A- and B-crystallin. From stages 16 to 23, the lens epithelial cells and fiber cells were immunoreactive to A- and B-crystallin. In rat embryos, A-crystallin appeared in the lens pit at E12, and B-crystallin appeared in the elongating lens fiber cells at E14. From E15 to E18, the lens epithelial cells and fiber cells were immunoreactive to A-crystallin. The lens fiber cells were also immunoreactive to B-crystallin, but the epithelial cells were not. These findings suggest that B-crystallin appears earlier than A-crystallin in the human lens, but at a later period than A-crystallin in the rat lens. B-Crystallin was not detected in the epithelial cells of the rat lens, but was perisistently present in the epithelial cells of the human lens.  相似文献   

18.
The light-dependent modulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity was studied in two species: Phaseolus vulgaris L., which has high levels of the inhibitor of Rubisco activity, carboxyarabinitol 1-phosphate (CA1P), in the dark, and Chenopodium album L., which has little CA1P. In both species, the ratio of initial to fully-activated Rubisco activity declined by 40–50% within 60 min of a reduction in light from high a photosynthetic photon flux density (PPFD; >700 mol · m–2 · s–1) to a low PPFD (65 ± 15 mol · m–2 · s–1) or to darkness, indicating that decarbamylation of Rubisco is substantially involved in the initial regulatory response of Rubisco to a reduction in PPFD, even in species with potentially extensive CA1P inhibition. Total Rubisco activity was unaffected by PPFD in C. album, and prolonged exposure (2–6 h) to low light or darkness was accompanied by a slow decline in the activity ratio of this species. This indicates that the carbamylation state of Rubisco from C. album gradually declines for hours after the large initial drop in the first 60 min following light reduction. In P. vulgaris, the total activity of Rubisco declined by 10–30% within 1 h after a reduction in PPFD to below 100 mol · m–2 · s–1, indicating CA1P-binding contributes significantly to the reduction of Rubisco capacity during this period, but to a lesser extent than decarbamylation. With continued exposure of P. vulgaris leaves to very low PPFDs (< 30 mol · m–2 · s–1), the total activity of Rubisco declined steadily so that after 6–6.5 h of exposure to very low light or darkness, it was only 10–20% of the high-light value. These results indicate that while decarbamylation is more prominent in the initial regulatory response of Rubisco to a reduction in PPFD in P. vulgaris, binding of CA1P increases over time and after a few hours dominates the regulation of Rubisco activity in darkness and at very low PPFDs.Abbreviations CA1P 2-carboxyarabinitol 1-phosphate - CABP 2-carboxyarabinitol 1,5-bisphosphate - kcat substrate-saturated turnover rate of fully carbamylated enzyme - PPFD photosynthetically active photon flux density (400–700 nm) - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate  相似文献   

19.
The thermophilic fungus Malbranchea sulfurea produces extracellular -amylase whereas -glucosidase is mainly cell bound. Extraction of the cell bound enzyme was maximum with one molar NaCl, followed by Triton ×100 and Urea-Na2SO3 extractants. Supplementation of Triton ×100 in growth medium significantly affected the presence of enzymes at various locations. A role for cell bound -amylase and -glucosidase has been suggested in rapid starch utilization by the fungus during early growth phase.  相似文献   

20.
A mutant of the cyanobacterium Synechocystis PCC 6803 was obtained by replacing the gene of the carboxylation enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) with that of the photosynthetic bacterium Rhodospirillum rubrum. This mutant consequently lacks carboxysomes — the protein complexes in which the original enzyme is packed. It is incapable of growing at atmospheric CO2 levels and has an apparent photosynthetic affinity for inorganic carbon (Ci) which is 1000 times lower than that of the wild type, yet it accumulates more Ci than the wild type. The mutant appears to be defective in its ability to utilize the intracellular Ci pool for photosynthesis. Unlike the carboxysomal carboxylase activity of Rubisco, which is almost insensitive to inhibition by O2 in vitro, the soluble enzyme is competitively inhibited by O2. The photosynthetic rate and Ci compensation point of the wild type were hardly affected by low O2 levels. Above 100 μM O2, however, both parameters became inhibited. The CO2 compensation point of the mutant was linearly dependent on O2 concentration. The higher sensitivity of the mutant to O2 inhibition than that expected from in-vitro kinetics parameters of Rubisco, indicates a low capacity to recycle photorespiratory metabolites to Calvin-cycle intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号