首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Giving-up times in resource patches by workers of the giant tropical ant,Paraponera clavata, are associated with travel time and reward volume but not reward concentration. The discovery of an artificial nectar reward stimulates local search which is centered around the initial reward site. Longer giving-up times increase the likelihood that a worker will find a second reward, but the search appears to be more effective for renewed rewards at the same location than for nearby rewards. When workers are near the colony, larger rewards cause the workers to stop searching and to initiate recruitment behavior. At patches distant from the nest, the threshold in reward volume for recruitment is much higher. These results are consistent with expectations for search strategies when energy expenditure in search is minimal, resources are renewable, and recruitment can occur.  相似文献   

2.
The marginal value theorem of Charnov is extended to a simple model covering the case of mammalian carnivores hunting underwater, in which situation their total search time and pursuit effort is constrained by the limited oxygen capacity of their lungs. In the mink Mustela vison hunting rudd in an experimental tank the duration of dives, of giving-up times, and of the pursuit phase of underwater hunts, as well as the frequency of dives, were consistent with the usual marginal value predictions. Giving-up times were also essentially constant within bouts, as expected. An interaction between foraging economics and oxygen reserves derived from the extended model was confirmed experimentally.  相似文献   

3.
Summary We investigated individual foraging components of the western harvester ant,Pogonomyrmex occidentalis, in the native seed background of a shrub-steppe environment. Our study identified factors affecting foraging movements and seed selection by individual ants. Some assumptions and predictions of central-place foraging theory and a correlated random walk were evaluated for individual foragers. Results showed that ant size was only weakly correlated with the seed sizes harvested; seed size was a more important constraint than a predictor of seed selection. Individual ants spent more time in localized search behavior than traveling between search areas and nests.P. occidentalis foragers encountered seeds randomly with respect to time, and handled a mean of 1.7 seeds/trip. A correlation of increased search effort with greater travel distances was consistent with central-place foraging theory but, contrary to it, search and travel effort were not associated with energetic reward.Individual ants exhibited fidelity in both search site and native seed species. Spatial analyses of foraging movements showed a highly oriented travel path while running, and an area-restricted path while searching. Searching ants moved in a manner consistent with a correlated random walk. The deterministic component of patch fidelity and the stochastic component of search may override energetic foraging decisions in individualP. occidentalis ants.  相似文献   

4.
P. A. Clancey 《Ostrich》2013,84(3):105-116
Tye, A. 1988. Foraging behaviour and selection of prey and perches by the Buffstreaked Chat Oenanthe bifasciata. Ostrich 59: 105–115.

Non-breeding Buffstreaked Chats Oenanthe bifasciata were studied in the Natal Drakensberg. Birds spent over 70% of their time foraging and 20% resting; both sexes sang, males c. 16% of the time. Individuals occupied overlapping home ranges; intra- and inter-specific aggressive interactions were recorded. Most foraging was by ground and aerial sallying from boulders, and all foraging methods were essentially sit-and-wait techniques. Buffstreaked Chats' most preferred perches were rocks 1,5-3 m high. Perches 1,5-3 m high were more likely to yield an aerial sally, while perches < 1,5 m were more likely to yield a ground sally or to be abandoned without a foraging attempt. Giving-up times were longer on perches 1,5-3 m high, but pre-capture waiting times were similar for perches of all heights. Giving-up times were longer than pre-capture times on perches 1,5-3 m high, but of similar duration to pre-capture times on lower perches. The major prey was grasshoppers, though ants, beetles, spiders and other insects were also eaten. When termites were swarming, birds switched to hunting them almost exclusively, thereby increasing their biomass intake rate. When termites were not available, at least 31% of the diet comprised prey 2 6 mm long. Aspects of the Buffstreaked Chat's biology are compared with other members of the genus Oenanthe.  相似文献   

5.
The two widespread tropical Solanum species S. paniculatum and S. stramoniifolium are highly dependent on the visits of large bees that pollinate the flowers while buzzing them. Both Solanum species do not offer nectar reward; the rewarding of bees is thus solely dependent on the availability of pollen. Flower visitors are unable to visually assess the amount of pollen, because the pollen is hidden in poricidal anthers. In this study we ask whether and how the amount of pollen determines the attractiveness of flowers for bees. The number of pollen grains in anthers of S. stramoniifolium was seven times higher than in S. paniculatum. By contrast, the handling time per five flowers for carpenter bees visiting S. paniculatum was 3.5 times shorter than of those visiting S. stramoniifolium. As a result foraging carpenter bees collected a similar number of pollen grains per unit time on flowers of both species. Experimental manipulation of pollen availability by gluing the anther pores showed that the carpenter bees were unable to detect the availability of pollen by means of chemical cues before landing and without buzzing. Our study shows that the efficiency of pollen collecting on S. paniculatum is based on large inflorescences with short between‐flower search times and short handling time of individual flowers, whereas that of S. stramoniifolium relies on a large amount of pollen per flower. Interestingly, large carpenter bees are able to adjust their foraging behaviour to drastically different strategies of pollen reward in otherwise very similar plant species.  相似文献   

6.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

7.
Field colonies of the ant Pheidole ceres were presented with a choice between a protein source and a carbohydrate source, under wet and dry conditions, at three different times in the year. These time periods corresponded with different reproductive (the production of sexuals) and growth (the production of workers) stages of the colony. Moisture had no effect on the forging behavior of P. ceres but the colonies did change their foraging preferences during different times of the year. This behavior correlated with the amount of larvae in the colony. However, lab experiments demonstrated that larvae did not directly influence the foraging decisions of the workers but that adult reproductives did.  相似文献   

8.
In ant colonies a large proportion of individuals remain inside nests for most of their lives and come out only when necessary. It is not clear how, in a nest of several thousand individuals, information about local time is communicated among members of the colony. Central to this seem to be circadian clocks, which have an intrinsic ability to keep track of local time by entraining to environmental light-dark, temperature, and social cycles. Here, the authors report the results of their study aimed at understanding the role of cyclic social interactions in circadian timekeeping of a day-active species of carpenter ant Camponotus paria. The authors found that daily social interactions with visitors (worker ants) was able to synchronize the circadian locomotor activity rhythm of host worker ants and queens, in one-on-one (pair-wise) and multi-individual (group-wise) interactions. Interestingly, the outcome of cyclic social interactions was context specific; when visitor workers socially interacted with host workers one-on-one, host workers considered the time of interaction as subjective day, but when visitor workers interacted with a group of workers and queens, the hosts considered the time of interaction as subjective night. These results can be taken to suggest that members of the ant species C. paria keep track of local time by socially interacting with workers (foragers) who shuttle in and out of the colony in search of food. (Author correspondence: )  相似文献   

9.
The evolution of dispersal at range margins received much attention recently, especially in the context of dynamic range shifts, such as those following climate change. However, much less attention has been devoted to study variation in and selection on dispersal at nonexpanding range margins, where populations are often small and isolated, and empirical test is dearly missing. To fill this gap, we tested whether dispersal of an ant‐dispersed perennial plant (Sternbergia clusiana) is quantitatively and/or qualitatively reduced toward a nonexpanding range margin. We evaluated plant investment in dispersal structures (elaiosome), seed removal rates, and the relative abundance, activity, and behavior of low‐ and high‐quality seed‐dispersing ants in six sites ranging from mesic Mediterranean site to arid site (>600 to <100 mm of annual rainfall, respectively), which marks the southern range margin of the species. In a set of cafeteria and baiting experiments, we found that overall seed removal rates, the contribution of high‐quality dispersers, maximum dispersal distance and dispersal‐conducive ant behavior decreased toward range margins. These findings agree with a lower investment in reward by range margin plant populations, as reflected by lower elaiosome/seed ratio, but not by variation in the reward chemistry. More than variation in traits controlled by the plants, the variation in ant–seed interactions could be attributed to reduced presence and activity of the more efficient seed‐dispersing ants in the marginal populations. Specifically, we found a mismatch between local distribution of potentially effective seed dispersers and that of the plant, even though those dispersers were observed in the study site. Interestingly, although the observed variation in the outcome of ant–seed interactions supported the prediction of reduced dispersal at nonexpanding range margins with small and isolated populations, the underlying mechanism seems to be incidental difference in the seed‐dispersing ant community rather than a plant‐mediated response to selection.  相似文献   

10.

Background

The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing.

Methods and Findings

We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1–4 sequential color discrimination trials to obtain a reward of 1–3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount.

Conclusions

Our results suggest that the rACC neurons encode information about reward proximity and amount in a manner that is dependent on utility of reward information. The manner in which the information is represented could be used in the moment-to-moment calculation of the effect of time and amount on predicted outcome value.  相似文献   

11.
ABSTRACT. Our findings suggest that the capacity for temporal learning in ants may be associated with nectivory. We tested for the existence of time and location learning in the nectivorous tropical ant, Paraponera clavata (F.). Artificial nectar sources were provided at fixed times and locations to P. clavata workers for 5 days. Ants appeared at the feeding location at the appropriate time on the first day that no reward was provided. By the third day without reward there was no difference in visitation between the feeding site and a control site equidistant from the colony. Most ants arrived at the feeding sites within 30 min of the training time, indicating that the precision of ant time sense is similar to that previously documented for honeybees.  相似文献   

12.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

13.
The use of ant colony optimization for solving stochastic optimization problems has received a significant amount of attention in recent years. In this paper, we present a study of enhanced ant colony optimization algorithms for tackling a stochastic optimization problem, the probabilistic traveling salesman problem. In particular, we propose an empirical estimation approach to evaluate the cost of the solutions constructed by the ants. Moreover, we use a recent estimation-based iterative improvement algorithm as a local search. Experimental results on a large number of problem instances show that the proposed ant colony optimization algorithms outperform the current best algorithm tailored to solve the given problem, which also happened to be an ant colony optimization algorithm. As a consequence, we have obtained a new state-of-the-art ant colony optimization algorithm for the probabilistic traveling salesman problem.  相似文献   

14.
Ants have the ability of homing and some species can migrate or move over long distances (nomadic). The presence of magnetic particles as geomagnetic sensors is the most accepted hypothesis to explain ant orientation mechanisms. The room temperature Ferromagnetic Resonance (FMR) spectra of migratory, nomadic, arboreal, trap-jaw and fire ants, applied to 11 samples are presented. The spectra were studied taking into account two components: the low field (LF) with a maximum at gmax values higher than 8 and the high field (HF) at the geff=2.1 with a linewidth of about 900 Oe. This study tests the systematization plausibility of ant magnetic material characteristics based on absorption spectra area and the ratios between the peak-to-peak amplitude spectral components (LF/HF). The HF component predominates in the spectra of the migratory and one nomadic ant, while the LF is the dominant one in the arboreal and six fire ants studied. The Solenopsis absorption spectra area, proportional to the magnetic material amount, increases as the local magnetic field intensity increases, suggesting an adaptation of these ants to the magnetic environment characteristic.  相似文献   

15.
1. Plant–animal mutualisms are key processes that influence community structure, dynamics, and function. They reflect several neutral and niche-based mechanisms related to plant–animal interactions. 2. However, the strength with which these processes influence community structure depends on functional traits that influence the interactions between mutualistic partners. In mutualisms involving plants and ants, nectar is the most common reward, and traits such as quantity and quality can affect ant species' responses by influencing their recruitment rates and aggressiveness. 3. In this study, nectar traits that mediate ant–plant defensive mutualisms were manipulated to test whether resource quantity and quality affect the structure of ant–plant interaction networks. A downscaling approach was used to investigate the interaction network between ant species and individual plants of the extrafloral nectary-bearing terrestrial orchid Epidendrum secundum. 4. We found a short-term reorganization of the ant assemblage that caused the interaction networks to become more specialised and modular in response to a more rewarding nectar gradient. Furthermore, the ant species tended to narrow their foraging range by limiting their associations to one or a few individual plants. 5. This study shows that ant species' responses to variable resource traits play an important role in the structure of the ant–plant interaction network. We suggest that more rewarding nectar enhanced aggressiveness and a massive recruitment of some ant species, leading to lower niche overlap and thus a less connected and more specialised network.  相似文献   

16.
Abstract

The Australian giant bulldog ant Myrmecia brevinoda Forel was first observed in New Zealand in 1940 (Keall 1981). Further observations of this species were made at a location in Devonport in 1948 and 1965, and a nest destroyed at this site in 1981. Since this time no further observations have been made, yet the status of this species is commonly listed as “uncertain establishment” on New Zealand faunal lists. We describe the control procedure used in 1981. In addition, to determine its current status we resurveyed ants in the area of earlier infestation using visual searches, pitfall trapping, and a reward for discovery posted to local residents. No evidence of M. brevinoda was found, though several other invasive species were found, including the Argentine ant Linepithema humile (Mayr), Pheidole rugosula Forel, and a recently established Australian cryptic Solenopsis species. Given the results of our survey and the absence of other reports of M. brevinoda over the last 24 years, we consider this species to be extinct or eradicated from New Zealand.  相似文献   

17.
Piovia-Scott J 《Oecologia》2011,166(2):411-420
Protective ant–plant mutualisms—where plants provide food or shelter to ants and ants protect the plants from herbivores—are a common feature in many ecological communities, but few studies have examined the effect of disturbance on these interactions. Disturbance may affect the relationship between plants and their associated ant mutualists by increasing the plants’ susceptibility to herbivores, changing the amount of reward provided for the ants, and altering the abundance of ants and other predators. Pruning was used to simulate the damage to buttonwood mangrove (Conocarpus erectus) caused by hurricanes. Pruned plants grew faster than unpruned plants, produced lower levels of physical anti-herbivore defenses (trichomes, toughness), and higher levels of chemical defenses (tannins) and extrafloral nectaries. Thus, simulated hurricane damage increased plant growth and the amount of reward provided to ant mutualists, but did not have consistent effects on other anti-herbivore defenses. Both herbivores and ants increased in abundance on pruned plants, indicating that the effects of simulated hurricane damage on plant traits were propagated to higher trophic levels. Ant-exclusion led to higher leaf damage on both pruned and upruned plants. The effect of ant-exclusion did not differ between pruned and unpruned plants, despite the fact that pruned plants had higher ant and herbivore densities, produced more extrafloral nectaries, and had fewer physical defenses. Another common predator, clubionid spiders, increased in abundance on pruned plants from which ants had been excluded. I suggest that compensatory predation by these spiders diminished the effect of ant-exclusion on pruned plants.  相似文献   

18.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

19.
Many aspects of hedonic behavior, including self-administration of natural and drug rewards, as well as human positive affect, follow a diurnal cycle that peaks during the species-specific active period. This variation has been linked to circadian modulation of the mesolimbic dopamine system, and is hypothesized to serve an adaptive function by driving an organism to engage with the environment during times where the opportunity for obtaining rewards is high. However, relatively little is known about whether more complex facets of hedonic behavior – in particular, reward learning – follow the same diurnal cycle. The current study aimed to address this gap by examining evidence for diurnal variation in reward learning on a well-validated probabilistic reward learning task (PRT). PRT data from a large normative sample (= 516) of non-clinical individuals, recruited across eight studies, were examined for the current study. The PRT uses an asymmetrical reinforcement ratio to induce a behavioral response bias, and reward learning was operationalized as the strength of this response bias across blocks of the task. Results revealed significant diurnal variation in reward learning, however in contrast to patterns previously observed in other aspects of hedonic behavior, reward learning was lowest in the middle of the day. Although a diurnal pattern was also observed on a measure of more general task performance (discriminability), this did not account for the variation observed in reward learning. Taken together, these findings point to a distinct diurnal pattern in reward learning that differs from that observed in other aspects of hedonic behavior. The results of this study have important implications for our understanding of clinical disorders characterized by both circadian and reward learning disturbances, and future research is needed to confirm whether this diurnal variation has a truly circadian origin.  相似文献   

20.
Foragers of the ant Formica schaufussitend to return to and search at a site of a previous food find. The search tactic employed by a forager on its return trip is related to the type of food previously encountered: search is more persistent in response to carbohydrate than to protein food. Using different reinforcement schedules with carbohydrate and protein food rewards, we show that, on a short-term as well as on a long-term basis, the basic pattern of search observed in naive foragers is only slightly modified through foraging experience. Foragers do not increase their search effort or adjust their search pattern when either type of food is systematically renewed on a fixed reward schedule and thus do not seem to be able to learn to assess the food predictability. Collective responses that could compensate for this lack of individual flexibility and increase foraging efficiency at the colony level are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号