首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The survival of spores of Aspergillus flavus suspended in distilled water and cooled rapidly to –70 to –75°C. was found to depend primarily on the rate of subsequent warming of the frozen suspension. Only 7 per cent of the spores germinated following slow warming at 0.9°C. per minute, whereas about 75 per cent germinated following rapid warming at 700°C. per minute. 2. Viability was dependent on the rate at which the suspensions warmed from –70 to 0°C. (subzero warming), but was not dependent on the rate of thawing of the frozen water in which the spores were suspended. 3. The logarithm of the percentage of germination appeared to be a linear function of the logarithm of the rate of subzero warming when spores were warmed at rates ranging from 0.12 to 1000°C. per minute. 4. The lethal effects of slow warming from –70 to 0°C. were more pronounced between about –20 and 0°C. than between –70 and –20°C. In the former range of temperatures, the percentage of germination decreased sharply as slow warming progressed towards 0°C. 5. Slow warming from –70 to 0°C. was more harmful to the spores than was a 1 or 2 hour exposure to constant temperatures between –70 and 0°C. 6. Slow warming was found to be more harmful than rapid warming when spores were suspended in horse serum, 0.16 molal sodium chloride, or 0.29 molal sucrose as well as in distilled water.  相似文献   

2.
Efflux of Red Cell Water into Buffered Hypertonic Solutions   总被引:3,自引:2,他引:1       下载免费PDF全文
Buffered NaCl solutions hypertonic to rabbit serum were prepared and freezing point depressions of each determined after dilution with measured amounts of water. Freezing point depression of these dilutions was a linear function of the amount of water added. One ml. of rabbit red cells was added to each 4 ml. of the hypertonic solutions and after incubation at 38°C. for 30 minutes the mixture was centrifuged and a freezing point depression determined on the supernatant fluid. The amount of water added to the hypertonic solutions by the red cells was calcuated from this freezing point depression. For each decrease in the freezing point of -0.093°C. of the surrounding solution red cells gave up approximately 5 ml. of water per 100 ml. of red cells in the range of -0.560 to -0.930°C. Beyond -0.930°C. the amount of water given up by 100 ml. of red cells fits best a parabolic equation. The maximum of this equation occurred at a freezing point of the hypertonic solution of -2.001°C. at which time the maximum amount of water leaving the red cells would be 39.9 ml. per 100 ml. of red cells. The data suggest that only about 43 per cent of the red cell water is available for exchange into solutions of increasing tonicity.  相似文献   

3.
VISUALIZATION OF FREEZING DAMAGE   总被引:5,自引:0,他引:5       下载免费PDF全文
Freeze-cleaving can be used as a direct probe to examine the ultrastructural alterations of biological material due to freezing. We examined the thesis that at least two factors, which are oppositely dependent upon cooling velocity, determine the survival of cells subjected to freezing. According to this thesis, when cells are cooled at rates exceeding a critical velocity, a decrease in viability is caused by the presence of intracellular ice; but cells cooled at rates less than this critical velocity do not contain appreciable amounts of intracellular ice and are killed by prolonged exposure to a solution that is altered by the presence of ice. As a test of this hypothesis, we examined freeze-fractured replicas of the yeast Saccharomyces cerevisiae after suspensions had been cooled at rates ranging from 1.8 to 75,000°C/min. Some of the frozen samples were cleaved and replicated immediately in order to minimize artifacts due to sample handling. Other samples were deeply etched or were rewarmed to -20°C and recooled before replication. Yeast cells cooled at or above the rate necessary to preserve maximal viability (~7°C/min) contained intracellular ice, whereas cells cooled below this rate showed no evidence of intracellular ice.  相似文献   

4.
The interactions between freezing kinetics and subsequent storage temperatures and their effects on the biological activity of lactic acid bacteria have not been examined in studies to date. This paper investigates the effects of three freezing protocols and two storage temperatures on the viability and acidification activity of Lactobacillus delbrueckii subsp. bulgaricus CFL1 in the presence of glycerol. Samples were examined at −196°C and −20°C by freeze fracture and freeze substitution electron microscopy. Differential scanning calorimetry was used to measure proportions of ice and glass transition temperatures for each freezing condition tested. Following storage at low temperatures (−196°C and −80°C), the viability and acidification activity of L. delbrueckii subsp. bulgaricus decreased after freezing and were strongly dependent on freezing kinetics. High cooling rates obtained by direct immersion in liquid nitrogen resulted in the minimum loss of acidification activity and viability. The amount of ice formed in the freeze-concentrated matrix was determined by the freezing protocol, but no intracellular ice was observed in cells suspended in glycerol at any cooling rate. For samples stored at −20°C, the maximum loss of viability and acidification activity was observed with rapidly cooled cells. By scanning electron microscopy, these cells were not observed to contain intracellular ice, and they were observed to be plasmolyzed. It is suggested that the cell damage which occurs in rapidly cooled cells during storage at high subzero temperatures is caused by an osmotic imbalance during warming, not the formation of intracellular ice.  相似文献   

5.
The freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below −30°C in DMSO-treated cells. Similar results were obtained with sorbitol-treated cells, except sorbitol had less effect on the amount of water crystallized at temperatures below −25°C. There was a close association between the per cent unfrozen water at −40°C and per cent cell survival after freezing for 1 hour in liquid nitrogen. It appears that, in periwinkle suspension cultures, the amount of liquid water at −40°C is critical for a successful cryopreservation. The combination of DMSO and sorbitol was the most effective in preventing water from freezing. The results obtained may explain the cryoprotective properties of DMSO and sorbitol and why DMSO and sorbitol in combination are more effective as cryoprotectants than when used alone.  相似文献   

6.
Studies of cold-active enzymes have provided basic information on the molecular and biochemical properties of psychrophiles; however, the physiological strategies that compensate for low-temperature metabolism remain poorly understood. We investigated the cellular pools of ATP and ADP in Psychrobacter cryohalolentis K5 incubated at eight temperatures between 22°C and −80°C. Cellular ATP and ADP concentrations increased with decreasing temperature, and the most significant increases were observed in cells that were incubated as frozen suspensions (<−5°C). Respiratory uncoupling significantly decreased this temperature-dependent response, indicating that the proton motive force was required for energy adaptation to frozen conditions. Since ATP and ADP are key substrates in metabolic and energy conservation reactions, increasing their concentrations may provide a strategy for offsetting the kinetic temperature effect, thereby maintaining reaction rates at low temperature. The adenylate levels increased significantly <1 h after freezing and also when the cells were osmotically shocked to simulate the elevated solute concentrations encountered in the liquid fraction of the ice. Together, these data demonstrate that a substantial change in cellular energy metabolism is required for the cell to adapt to the low temperature and water activity conditions encountered during freezing. This physiological response may represent a critical biochemical compensation mechanism at low temperature, have relevance to cellular survival during freezing, and be important for the persistence of microorganisms in icy environments.  相似文献   

7.
Sakai A 《Plant physiology》1966,41(6):1050-1054
Thin unmounted cortical tissue sections from winter twigs of the mulberry tree were held with a thin forceps and rapidly immersed in liquid nitrogen from room temperatures without prefreezing. They were rewarmed; rapidly in water at 10° to 40°, or slowly, in air at room temperatures. In those sections rapidly rewarmed, all survived. None survived in those sections rewarmed slowly in air.

Tissue sections mounted between coverglasses with water were extracellulary prefrozen at the temperatures low enough to dehydrate almost all of the freezable water in cells. These sufficiently prefrozen cells could survive immersion in liquid nitrogen, and the survival value was very little affected by the rates of cooling to and rewarming from super-low temperatures. With insufficient prefreezing at higher temperatures, however, the rewarming process seriously influenced the survival value of cells frozen at super-low temperatures. Slow rewarming in air destroyed all of the cells, while rapid rewarming in water at 30° did not affect them. An abrupt decrease in the survival value in insufficiently prefrozen cells during rewarming was also observed at temperatures above approximately −50° following immersion in liquid nitrogen. Very little decrease in the survival value was observed in any of the cells that had been sufficiently prefrozen.

These results indicate that cells which are insufficiently prefrozen may contain freezable water which nucleates during rapid cooling in liquid nitrogen and then grows during the subsequent slow rewarming into ice masses which destroy the viability of the cells. Such fatal intracellular freezing rarely occurs in sufficiently prefrozen cells, irrespective of the rate of cooling to or rewarming from super-low temperatures.

  相似文献   

8.
Taking advantage of their optical transparency, we clearly observed the third stage infective juveniles (IJs) of Steinernema feltiae freezing under a cryo-stage microscope. The IJs froze when the water surrounding them froze at −2°C and below. However, they avoid inoculative freezing at −1°C, suggesting cryoprotective dehydration. Freezing was evident as a sudden darkening and cessation of IJs'' movement. Freeze substitution and transmission electron microscopy confirmed that the IJs of S. feltiae freeze intracellularly. Ice crystals were found in every compartment of the body. IJs frozen at high sub-zero temperatures (−1 and −3°C) survived and had small ice crystals. Those frozen at −10°C had large ice crystals and did not survive. However, the pattern of ice formation was not well-controlled and individual nematodes frozen at −3°C had both small and large ice crystals. IJs frozen by plunging directly into liquid nitrogen had small ice crystals, but did not survive. This study thus presents the evidence that S. feltiae is only the second freeze tolerant animal, after the Antarctic nematode Panagrolaimus davidi, shown to withstand extensive intracellular freezing.  相似文献   

9.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

10.
The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium.  相似文献   

11.
Reversible inactivation of typhus Rickettsiae. I. Inactivation by freezing   总被引:4,自引:0,他引:4  
Rickettsiae that have been frozen and thawed in isotonic salt solutions show greatly decreased toxicity for mice, hemolytic activity, respiration, and infectivity for eggs. All these properties can be partially restored by incubation of the rickettsiae in the presence of DPN and coenzyme A for 2 hours at 34°C. The extent of both inactivation and of subsequent reactivation is markedly affected by the presence of low concentrations of sucrose during the process of freezing and thawing. It has been shown that DPN is present in rickettsial suspensions and that in preparations that have not been frozen, the DPN sediments with the rickettsiae. After freezing in isotonic salt solution the DPN becomes non-sedimentable.  相似文献   

12.
Streptomycin (100 micrograms per milliliter), desiccation (over CaSO4), and ultraviolet radiation (4500 microwatts per square centimeter at 254 nanometers for 15 minutes) reduced ice nucleation activity by Pseudomonas viridiflava strain W-1 as determined by freezing drops of the bacterial suspensions. Highest residual ice nucleation activity by dead cells was obtained by desiccation, although no freezing above −3.5°C was detected. The rate and extent of loss of ice nucleation activity following streptomycin and ultraviolet treatment was affected by preconditioning temperature. At 21°C and above, loss of activity by dead cells was rapid and irreversible.  相似文献   

13.
It was attempted to preserve the water distribution in central nervous tissue by rapid freezing followed by substitution fixation at low temperature. The vermis of the cerebellum of white mice was frozen by bringing it into contact with a polished silver mirror maintained at a temperature of about -207°C. The tissue was subjected to substitution fixation in acetone containing 2 per cent OsO4 at -85°C for 2 days, and then prepared for electron microscopy by embedding in Maraglas, sectioning, and staining with lead citrate or uranyl acetate and lead. Cerebellum frozen within 30 seconds of circulatory arrest was compared with cerebellum frozen after 8 minutes' asphyxiation. From impedance measurements under these conditions, it could be expected that in the former tissue the electrolyte and water distribution is similar to that in the normal, oxygenated cerebellum, whereas in the asphyxiated tissue a transport of water and electrolytes into the intracellular compartment has taken place. Electron micrographs of tissue frozen shortly after circulatory arrest revealed the presence of an appreciable extracellular space between the axons of granular layer cells. Between glia, dendrites, and presynaptic endings the usual narrow clefts and even tight junctions were found. Also the synaptic cleft was of the usual width (250 to 300 A). In asphyxiated tissue, the extracellular space between the axons is either completely obliterated (tight junctions) or reduced to narrow clefts between apposing cell surfaces.  相似文献   

14.
Freezing injury and root development in winter cereals   总被引:7,自引:5,他引:2       下载免费PDF全文
Upon exposure to 2°C, the leaves and crowns of rye (Secale cereale L. cv `Puma') and wheat (Triticum aestivum L. cv `Norstar' and `Cappelle') increased in cold hardiness, whereas little change in root cold hardiness was observed. Both root and shoot growth were severely reduced in cold-hardened Norstar wheat plants frozen to −11°C or lower and transplanted to soil. In contrast, shoot growth of plants grown in a nutrient agar medium and subjected to the same hardening and freezing conditions was not affected by freezing temperatures of −20°C while root growth was reduced at −15°C. Thus, it was apparent that lack of root development limited the ability of plants to survive freezing under natural conditions.

Generally, the temperatures at which 50% of the plants were killed as determined by the conductivity method were lower than those obtained by regrowth. A simple explanation for this difference is that the majority of cells in the crown are still alive while a small portion of the cells which are critical for regrowth are injured or killed.

Suspension cultures of Norstar wheat grown in B-5 liquid medium supplemented with 3 milligrams per liter of 2,4-dichlorophenoxyacetic acid could be cold hardened to the same levels as soil growth plants. These cultures produce roots when transferred to the same growth medium supplemented with a low rate of 2,4-dichlorophenoxyacetic acid (<1 milligram per liter). When frozen to −15°C regrowth of cultures was 50% of the control, whereas the percentage of calli with root development was reduced 50% in cultures frozen to −11°C. These results suggest that freezing affects root morphogenesis rather than just killing the cells responsible for root regeneration.

  相似文献   

15.
Correlating measurements from differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and survival of twigs after two-step cooling experiments, we provide strong evidence that winter-hardened Populus balsamifera v. virginiana (Sarg.) resists the stresses of freezing below −28°C by amorphous solidification (glass formation) of most of its intracellular contents during slow cooling (≤5°C per hour). It is shown that other components of the intracellular medium go through glass transitions during slow cooling at about −45°C and below −70°C. This `three glass' model was then used to predict the results of differential scanning calorimetry, freeze-fracture freeze-etch electron microscopy, and biological experiments. This model is the first definitive explanation for the resistance of a woody plant to liquid N2 temperatures even if quench cooling (1200°C per minute) begins at temperatures as high as −20°C and warming is very slow (≤5°C per hour). It is also the first time high temperature natural intracellular glass formation has been demonstrated.  相似文献   

16.
Opuntia ficus-indica, a Crassulacean acid metabolism plant cultivated for its fruits and cladodes, was used to examine chemical and physiological events accompanying low-temperature acclimation. Changes in osmotic pressure, water content, low molecular weight solutes, and extracellular mucilage were monitored in the photosynthetic chlorenchyma and the water-storage parenchyma when plants maintained at day/night air temperatures of 30/20°C were shifted to 10/0°C. An increase in osmotic pressure of 0.13 megapascal occurred after 13 days at 10/0°C. Synthesis of glucose, fructose, and glycerol accounted for most of the observed increase in osmotic pressure during the low-temperature acclimation. Extracellular mucilage and the relative apoplastic water content increased by 24 and 10%, respectively, during exposure to low temperatures. These increases apparently favor the extracellular nucleation of ice closer to the equilibrium freezing temperature for plants at 10/0°C, which could make the cellular dehydration more gradual and less damaging. Nuclear magnetic resonance studies helped elucidate the cellular processes during ice formation, such as those revealed by changes in the relaxation times of two water fractions in the chlorenchyma. The latter results suggested a restricted mobility of intracellular water and an increased mobility of extracellular water for plants at 10/0°C compared with those at 30/20°C. Increased mobility of extracellular water could facilitate extracellular ice growth and thus delay the potentially lethal intracellular freezing during low-temperature acclimation.  相似文献   

17.
18.
The Formation and Distribution of Ice within Forsythia Flower Buds   总被引:1,自引:0,他引:1       下载免费PDF全文
Differential thermal analysis detected two freezing events when dormant forsythia (Forsythia viridissima Lindl.) flower buds were cooled. The first occurred just below 0°C, and was coincident with the freezing of adjacent woody tissues. The second exotherm appeared as a spike between −10 and −25°C and was correlated with the lethal low temperature. Although this pattern of freezing was similar to that observed in other woody species, differences were noted. Both direct observations of frozen buds and examination of buds freeze-fixed at −5°C demonstrated that ice formed within the developing flowers at temperatures above the second exotherm and lethal temperature. Ice crystals had formed within the peduncle and in the lower portions of the developing flower. Ice also formed within the scales. In forsythia buds, the developing floral organ did not freeze as a unit as noted in other species. Instead the low temperature exotherm appeared to correspond to the lethal freezing of supercooled water within the anthers and portions of the pistil.  相似文献   

19.
A study was done to determine the performance of differential, selective media for supporting resuscitation and colony development by stressed cells of Enterobacter sakazakii. Cells of four strains of E. sakazakii isolated from powdered infant formula were exposed to five stress conditions: heat (55°C for 5 min), freezing (−20°C for 24 h, thawed, frozen again at −20°C for 2 h, thawed), acidic pH (3.54), alkaline pH (11.25), and desiccation in powdered infant formula (water activity, 0.25; 21°C for 31 days). Control and stressed cells were spiral plated on tryptic soy agar supplemented with 0.1% pyruvate (TSAP, a nonselective control medium); Leuschner, Baird, Donald, and Cox (LBDC) agar (a differential, nonselective medium); Oh and Kang agar (OK); fecal coliform agar (FCA); Druggan-Forsythe-Iversen (DFI) medium; violet red bile glucose (VRBG) agar; and Enterobacteriaceae enrichment (EE) agar. With the exception of desiccation-stressed cells, suspensions of stressed cells were also plated on these media and on R&F Enterobacter sakazakii chromogenic plating (RF) medium using the ecometric technique. The order of performance of media for recovering control and heat-, freeze-, acid-, and alkaline-stressed cells by spiral plating was TSAP > LBDC > FCA > OK, VRBG > DFI > EE; the general order for recovering desiccated cells was TSAP, LBDC, FCA, OK > DFI, VRBG, EE. Using the ecometric technique, the general order of growth indices of stressed cells was TSAP, LBDC > FCA > RF, VRBG, OK > DFI, EE. The results indicate that differential, selective media vary greatly in their abilities to support resuscitation and colony formation by stressed cells of E. sakazakii. The orders of performance of media for recovering stressed cells were similar using spiral plating and ecometric techniques, but results from spiral plating should be considered more conclusive.  相似文献   

20.
Sakai A  Yoshida S 《Plant physiology》1967,42(12):1695-1701
The survival rates of the cortical parenchymal cells of mulberry tree were determined as a function of cooling and rewarming rates. When cooling was carried out slowly at 1° to 15° per minute, all of the cells still remained viable even when rewarmed either rapidly or slowly. Survival rates gradually decreased to zero as the cooling rate increased from about 15° to 2000° per minute. In the intermediate cooling rates, when the cells were cooled at the rates lower than 14° per minute, from −2.2° to about −10°, these cells could survive subsequent rapid cooling and rewarming.

However, at cooling rates above 1000° per minute and with rapid rewarming, the effect of cooling rate reversed and survival increased, reaching a maximum at about 200,000° per minute. As the cooling rate increased above 15° per minute, survival rates became increasingly dependent on the rewarming rate, with rapid rewarming becoming less deleterious than slow rewarming.

The temperature range at which damage occurred during rewarming following removal from liquid nitrogen and in which growth rate of ice crystallization was greatest, was −30° to −40°. The survival rates even in the prefrozen cells at −30° decreased considerably by keeping them at −30° for 10 minutes after removal from liquid nitrogen. This fact indicates that intracellular freezable water remains to some degree even in the prefrozen cells at −30°. After removal from liquid nitrogen, all cells retained their viability, when they were passed rapidly through a temperature range between −50° and −2.5° within about 2 seconds, namely at the rates greater than 1000° per minute.

These observations are explained in terms of the size of the crystals formed within the cortical cells.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号