首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryopreservation is a well-established technique used for the long-term storage of biological materials whose biological activity is effectively stopped under low temperatures (suspended animation). Since most biological methods do not work in a low-temperature frozen environment, the mechanism and details of the depression of cellular activity in the frozen state remain largely uncharacterized. In this work, we propose, to our knowledge, a new approach to study the downregulation of the redox activity of cytochromes b and c in freezing yeast cells in a contactless, label-free manner. Our approach is based on cytochrome photobleaching effects observed in the resonance Raman spectra of live cells. Photoinduced and native redox reactions that contributed to the photobleaching rate were studied over a wide temperature range (from −173 to +25°C). We found that ice formation influences both the rate of cytochrome redox reactions and the balance between the reduced and oxidized cytochromes. We demonstrate that the temperature dependence of native redox reaction rates can be well described by the thermal activation law with an apparent energy of 32.5 kJ/mol, showing that the redox reaction rate is ∼1015 times slower at liquid nitrogen temperature than at room temperature.  相似文献   

2.
Some properties and kinetics of yeast nucleotide pyrophosphatase were studied in comparison with those of 5′-nucleotidase.

It was concluded that the two enzyme activities exist in a single protein molecule, though their active sites are not completely identical.  相似文献   

3.
A new method for preparing NMN (nicotinamide mononucleotide) by the use of yeast 5′-nucleotidase is presented. After hydrolysis of NAD into NMN, adenosine and Pi by yeast 5′-nucleotidase which is a single protein having nucleotide pyrophosphatase activity, NMN in the hydrolysate of NAD was purified on active carbon and subsequently on Amberlite IRC-50.

In the typical experiment, 0.74 g of NMN (88% purity) was obtained from 2g of NAD preparation, giving 76% recovery on the basis of the theoretical value.

The NMN preparation was identified as NMN by IR spectra, UV spectra, paper chromatography, and also by component analysis.  相似文献   

4.
Active substances which increased RNA content and RNA productivity in yeast culture without affecting the growth rate of yeast were investigated.

The remarkable effect of zinc ion on RNA accumulation was found in flask cultures of Candida utilis.

The active substance of culture of Saccharomyces cerevisiae was isolated from the culture filtrate of Streptomyces sp. S–22 and it was identified as anisomycin, an antiprotozoal and antifungal antibiotic. The effect of anisomycin on the enhancement of yeast RNA formation was shown only with the Saccharomyces genus, which was more sensitive to the antibiotic than other genus. This phenomenon was exhibited only in the case of anisomycin and cycloheximide, whose modes of action were similar among various antibiotics. The ratio of four nucleotides in RNA fraction was almost equal to that of ribosomal RNA.  相似文献   

5.
A new method based on fluorescence microscopy was developed to detect active yeast cells in cryosections of wheat dough. The sections were stained with 4′,6-diamidino-2-phenylindole (DAPI) and counterstained with Evans blue. The active yeast cells in the sections appeared brilliant yellow and were readily distinguished from the red dough matrix. The dead cells allowed penetration of the Evans blue through the cell membrane, which interfered with the DAPI staining and caused the dead cells to blend into the red environment. The number of active yeast cells in fermenting dough sections containing different proportions of living and dead yeast cells correlated well with the gas-forming capability of the yeast in the dough but not with the results of the conventional plate count method. The new method allows the study of yeast activity not only during the different stages of frozen dough processing but also during the fermentation of doughs.  相似文献   

6.
7.
Intact yeast cells are Gram positive but broken or disrupted cells are Gram negative. A counterstain with methyl green provides differential staining between cell wall and cytoplasm. The cells and cell fragments are dried on a slide and stained by a standard Gram stain. The preparation is then treated for 5 min with 1% phosphomolybdic acid, washed, and stained 0.5 min with 1% aqueous methyl green (unpurified by CHCl3 extraction). Under these conditions whole, intact cells are dark purple or black, walls of broken cells and purified walls are light green, and the exposed cytoplasm stains light purple. All fractions can be easily differentiated.  相似文献   

8.
电穿孔法转化完整酵母的研究   总被引:6,自引:0,他引:6  
丁志山  蒋承俊 《生物技术》1995,5(4):9-12,26
本文用酿酒酵母(Saccharomyces cerevisiae)作材料,探讨了电穿孔转化完整酵母的几个条件。其中电场强度及脉冲时间是两个最重要的参数。在2kv/cm,9ms时获得10^4转化子/ugDNA的转化率。转化率还与所采用的菌株与质粒等条件有关。此技术简便迅速。  相似文献   

9.
10.
11.
Paracoccidioides, a complex of several phylogenetic species, is the causative agent of paracoccidioidomycosis. The ability of pathogenic fungi to develop a multifaceted response to the wide variety of stressors found in the host environment is important for virulence and pathogenesis. Extracellular proteins represent key mediators of the host-parasite interaction. To analyze the expression profile of the proteins secreted by Paracoccidioides, Pb01 mycelia and yeast cells, we used a proteomics approach combining two-dimensional electrophoresis with matrix-assisted laser desorption ionization quadrupole time-of-flight mass spectrometry (MALDI-Q-TOF MS/MS). From three biological replicates, 356 and 388 spots were detected, in mycelium and yeast cell secretomes, respectively. In this study, 160 non-redundant proteins/isoforms were indentified, including 30 and 24 proteins preferentially secreted in mycelia and yeast cells, respectively. In silico analyses revealed that 65% of the identified proteins/isoforms were secreted primarily via non-conventional pathways. We also investigated the influence of protein export inhibition in the phagocytosis of Paracoccidioides by macrophages. The addition of Brefeldin A to the culture medium significantly decreased the production of secreted proteins by both Paracoccidioides and internalized yeast cells by macrophages. In contrast, the addition of concentrated culture supernatant to the co-cultivation significantly increased the number of internalized yeast cells by macrophages. Importantly, the proteins detected in the fungal secretome were also identified within macrophages. These results indicate that Paracoccidioides extracellular proteins are important for the fungal interaction with the host.  相似文献   

12.
Differential thermal analysis (DTA) was used for study of milk protein denaturation. Protein solutions produced an endothermic peak of characteristic shape and temperature of peak minimum. The peak minimum is considered the coagulation temperature of the protein.

The influence of pH and additives such as sugars and NaCl was clearly observed on the thermograms of β-lactoglobulin solution. Addition of κ-casein to β-lactoglobulin solution showed an inhibitory effect on the heat coagulation.

Solid proteins produced two-stage exothermic peaks between 200°C and 400°C.

DTA was a useful method in the study of heat denaturation and degradation of protein.  相似文献   

13.
14.
15.
16.
锌酵母中酵母甘露多糖组分的特征和结构   总被引:4,自引:0,他引:4  
本文研究从锌酵母中分离出的酵母甘露多糖XP的特征和结构。XP经全水解和^13CNMR谱显示除甘露糖基外,还有少量L-鼠李糖基和甲氧基。甲基化分析、过碘酸盐氧化、Smith降解、乙酰解和部分酸水解显示XP的主链是1→6连接的甘露糖,侧链是1→2连接的甘露糖。^1H及^13C NMR谱表明所有糖苷键均为α型,结合元素分析XP基本是酵母甘露多糖和蛋白质以及锌的络合物。  相似文献   

17.
固定化酵母细胞生产1,6-二磷酸果糖研究   总被引:2,自引:0,他引:2  
本文研究了固定化酵母细胞制备果糖1,6二磷酸(FDP)的方法及其生产。用卡拉胶包埋方法固定化酿酒酵母(Sacchromyces cerevisae),对含葡萄糖1.0M,磷酸盐0.8M的糖磷液,pH6.5,在37℃下进行磷酸化反应。反复分批转化20天以上,可达到平均产FDPH_427.58mg/ml,最高为59.94mg/ml。用100ml固定化细胞生物反应器连续运转309h,稀释速率D=0.097h~(-1),平均产FDPH_4 21.51mg/ml。20L反应器连续运转,生产能力达到1.7g/h.L。用层析方法制备FDPNa_3结晶粉,提取收率为72.08%,制备质量达到或超过了国内外同类产品的质量要求。  相似文献   

18.
Global Gene Expression Analysis of Yeast Cells during Sake Brewing   总被引:2,自引:0,他引:2       下载免费PDF全文
During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process.  相似文献   

19.
N2O was produced during the reduction of NO2- by resting cells of Lactobacillus lactis TS4. At an initial NO2- concentration of 69 micrograms/ml, the rate of N2O production was 1.97 nmol/min per mg of protein, and the recovery of reduced NO2- -N as N2O-N after 24 h was 77%. Higher initial NO2- concentrations decreased both the rate of production of N2O and the recovery of reduced NO2- -N. CO2 production increased during NO2- reduction.  相似文献   

20.
The budding yeast formins, Bnr1 and Bni1, behave very differently with respect to their interactions with muscle actin. However, the mechanisms underlying these differences are unclear, and these formins do not interact with muscle actin in vivo. We use yeast wild type and mutant actins to further assess these differences between Bnr1 and Bni1. Low ionic strength G-buffer does not promote actin polymerization. However, Bnr1, but not Bni1, causes the polymerization of pyrene-labeled Mg-G-actin in G-buffer into single filaments based on fluorometric and EM observations. Polymerization by Bnr1 does not occur with Ca-G-actin. By cosedimentation, maximum filament formation occurs at a Bnr1:actin ratio of 1:2. The interaction of Bnr1 with pyrene-labeled S265C Mg-actin yields a pyrene excimer peak, from the cross-strand interaction of pyrene probes, which only occurs in the context of F-actin. In F-buffer, Bnr1 promotes much faster yeast actin polymerization than Bni1. It also bundles the F-actin in contrast to the low ionic strength situation where only single filaments form. Thus, the differences previously observed with muscle actin are not actin isoform-specific. The binding of both formins to F-actin saturate at an equimolar ratio, but only about 30% of each formin cosediments with F-actin. Finally, addition of Bnr1 but not Bni1 to pyrene-labeled wild type and S265C Mg-F actins enhanced the pyrene- and pyrene-excimer fluorescence, respectively, suggesting Bnr1 also alters F-actin structure. These differences may facilitate the ability of Bnr1 to form the actin cables needed for polarized delivery of nutrients and organelles to the growing yeast bud.Bni1 and Bnr1 are the two formin isoforms expressed in Saccharomyces cerevisiae (1, 2). These proteins, as other isoforms in the formin family, are large multidomain proteins (3, 4). Several regulatory domains, including one for binding the G-protein rho, are located at the N-terminal half of the protein (47). FH1, FH2, and Bud6 binding domains are located in the C-terminal half of the protein (8). The formin homology 1 (FH1)2 domain contains several sequential poly-l-proline motifs, and it interacts with the profilin/actin complex to recruit actin monomers and regulate the insertion of actin monomers at the barbed end of actin (911). The fomin homology domain 2 (FH2) forms a donut-shaped homodimer, which wraps around actin dimers at the barbed end of actin filaments (12, 13). One important function of formin is to facilitate actin polymerization by stabilizing actin dimers or trimers under polymerization conditions and then to processively associate with the barbed end of the elongating filament to control actin filament elongation kinetics (1318).A major unsolved protein in the study of formins is the elucidation of the individual functions of different isoforms and their regulation. In vivo, these two budding yeast formins have distinct cellular locations and dynamics (1, 2, 19, 20). Bni1 concentrates at the budding site before the daughter cell buds from the mother cell, moves along with the tip of the daughter cell, and then travels back to the neck between daughter and mother cells at the end of segregation. Bnr1 localizes only at the neck of the budding cell in a very short period of time after bud emergence. Although a key cellular function of these two formins in yeast is to promote actin cable formation (8, 18), the roles of the individual formins in different cellular process is unclear because deleting either individual formin gene has limited impact on cell growth and deleting both genes together is lethal (21).Although each of the two formins can nucleate actin filament formation in vitro, the manner in which they affect polymerization is distinctly isoform-specific. Most of this mechanistic work in vitro has used formin fragments containing the FH1 and FH2 domains. Bni1 alone processively caps the barbed end of actin filaments partially inhibiting polymerization at this end (14, 16, 18). The profilin-actin complex, recruited to the actin barbed end through its binding to Bni1 FH1 domain, possibly raises the local actin concentration and appears to allow this inhibition to be overcome, thereby, accelerating barbed end polymerization. It has also been shown that this complex modifies the kinetics of actin dynamics at the barbed end (9, 11, 18, 22). Moreover, Bni1 participation leads only to the formation of single filaments (8). In comparison, the Bnr1 FH1-FH2 domain facilitates actin polymerization much more efficiently than does Bni1. Moseley and Goode (8) showed Bnr1 accelerates actin polymerization up to 10 times better than does Bni and produces actin filament bundles when the Bnr1/actin molar ratio is above 1:2. Finally, the regulation of Bni1 and Bnr1 by formin binding is different. For example, Bud 6/Aip3, a yeast cell polarity factor, binds to Bni1, but not Bnr1, and also stimulates its activity in vitro.For their studies, Moseley and Goode (8) utilized mammalian skeletal muscle actin instead of the S. cerevisiae actin with which the yeast formins are designed to function. It is entirely possible that the differences observed with the two formins are influenced quantitatively or qualitatively by the nature of the actin used in the study. This possibility must be seriously considered because although yeast and muscle actins are 87% identical in sequence, they display marked differences in their polymerization behavior (23). Yeast actin nucleates filaments better than muscle actin (24, 25). It appears to form shorter and more flexible filaments than does muscle actin (26, 27). Finally, the disposition of the Pi released during the hydrolysis of ATP that occurs during polymerization is different. Yeast actin releases its Pi concomitant with hydrolysis of the bound ATP whereas muscle actin retains the Pi for a significant amount of time following nucleotide hydrolysis (28, 29). This difference is significant because ADP-Pi F-actin has been shown to be more stable than ADP F-actin (30). Another example of this isoform dependence is the interaction of yeast Arp2/3 with yeast versus muscle actins (31). Yeast Arp2/3 complex accelerates polymerization of muscle actin only in the presence of a nucleation protein factor such as WASP. However, with yeast actin, no such auxiliary protein is required. In light of these actin behavioral differences, to better understand the functional differences of these two formins in vivo, we have studied the behavior of Bni 1 and Bnr 1 with WT and mutant yeast actins, and we have also explored the molecular basis underlying the Bnr 1-induced formation of actin nuclei from G-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号