首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trehalose-6-phosphate synthase (TPS) is one of the key subunits of the trehalose synthase complex, responsible for synthesis of trehalose in Saccharomyces cerevisiae. Different laboratories have tried to purify TPS, but have been unable to separate it from the complex. During the present study, active TPS has been isolated from the trehalose synthase complex as a free 59 kDa protein. A 158 fold purification was achieved with over 84% recovery of active TPS. N-terminal sequence confirmed the 59 kDa protein to be TPS. It was revealed to be a highly hydrophobic protein by amino acid analysis data. Activity of TPS was identified to be governed by association-dissociation of protein components. TPS activity of the isolated enzyme was highly unstable due to dissociation of the protein from the complex. Aggregation of active molecules was also seen to enhance as well as stabilize enzyme activity. This aggregation was concentration dependent and activity was seen to be enhanced by increasing the number of active molecules and fell with dilution. The association of the active complex was also found to be governed by ionic interactions.  相似文献   

2.
Trehalose-6-phosphate synthase activity was determined by colorimetric, spectrophotometric and trehalose specific assays. All methods gave comparable results thus confirming our previous findings (1) and those reported by Elander (2). Different strains and mutants of Saccharomyces were carefully re-investigated in relation with the recent claim made by Vandercammen et al. (3) that our spectrophotometric assay over-estimated the enzyme activity and that no differences exist between wild type and mutant strains. In this paper we also confirm the de-activation of the trehalose synthase complex in response to a "glucose signal", and present trehalose-6-phosphate synthase and trehalase activities in different strains measured during all phases of growth on glucose.  相似文献   

3.
Two transgenic potato lines, T1 and T2, expressing the trehalose-6-phosphate synthase (TPS1) gene of yeast were isolated. In our experimental approach, we applied two novelties, namely the fusion of the drought-inducible promoter StDS2 to TPS1 and a marker-free transformation method. In contrast to the expected drought-induced expression, only a very low constitutive TPS1 expression was detected in the transgenic lines, probably due to chromosomal position effects. The observed expression pattern, however, was sufficient to alter the drought response of plants. Detached leaves of T1 and T2 showed an 8 h delay in wilting compared to the non-transformed control. Potted plants of T1 and T2 kept water 6 days longer than control plants and maintained high stomatal conductance and a satisfactory rate of net photosynthesis. During drought treatment, CO2 assimilation rate measured at saturating CO2 level was maintained at maximum level for 6–9 days in transgenic plants while it decreased rapidly after 3 days in the wild type plants. Under optimal growth conditions, lower CO2 fixation was detected in the transgenic than in the control plants. Stomatal densities of T1 and T2 leaves were reduced by 30–40%. This may have contributed to the lower CO2 fixation rate and altered drought response. Ibolya Stiller, and Sándor Dulai contributed equally to this work.  相似文献   

4.
AIMS: Saccharomyces cerevisiae was used for studying the physiological effects of hydrostatic pressure. METHODS AND RESULTS: The effects of hydrostatic pressure on the ultrastructure of wild-type and trehalose-6-phosphate synthase (tps1) mutant cells were investigated by transmission electron microscopy. Pressure induced several morphological changes in wild-type and tps1 cells, the latter showing greater structural alterations. When the cells were submitted to a preheat treatment they both acquired resistance to the pressure treatment. CONCLUSION: As the tps1 mutant was 1000-fold more barosensitive than its parental strain, it showed greater structural alterations compared with the wild-type. Microscopic images of the yeast cells suggested that hydrostatic pressure induced changes in the cytoskeleton and therefore, on the cell wall and in the dynamics of the organelles. SIGNIFICANCE AND IMPACT OF THE STUDY: This work presents the effects of hydrostatic pressure on the morphology of yeast cells and confirms the importance of several different factors in the protection of cells against stress.  相似文献   

5.
In yeast, trehalose-6-phosphate synthase is a key enzyme for trehalose biosynthesis, encoded by the structural gene TPS1. Trehalose affects sugar metabolism as well as osmoprotection against several environmental stresses, such as heat and desiccation. The TPS1 gene of Saccharomyces cerevisiae was engineered under the control of the CaMV 35S promoter for constitutive expression in transgenic potato plants by Ti-plasmid of Agrobacterium-mediated transformation. The resulting TPS1 transgenic potato plants exhibited various morphological phenotypes in culture tubes, ranging from normal to severely retarded growth, including dwarfish growth, yellowish lancet-shaped leaves, and aberrant root development. However, the plants recovered from these negative growth effects when grown in a soil mixture. The TPS1 transgenic potato plants showed significantly increased drought resistance. These results suggest that the production of trehalose not only affects plant development but also improves drought tolerance.  相似文献   

6.
In the yeast Saccharomyces cerevisiae, TPS1-encoded trehalose-6-phosphate synthase (TPS) exerts an essential control on the influx of glucose into glycolysis, presumably by restricting hexokinase activity. Deletion of TPS1 results in severe hyperaccumulation of sugar phosphates and near absence of ethanol formation. To investigate whether trehalose 6-phosphate (Tre6P) is the sole mediator of hexokinase inhibition, we have reconstituted ethanolic fermentation from glucose in permeabilized spheroplasts of the wild-type, tps1Delta and tps2Delta (Tre6P phosphatase) strains. For the tps1Delta strain, ethanol production was significantly lower and was associated with hyperaccumulation of Glu6P and Fru6P. A tps2Delta strain shows reduced accumulation of Glu6P and Fru6P both in intact cells and in permeabilized spheroplasts. These results are not consistent with Tre6P being the sole mediator of hexokinase inhibition. Reconstitution of ethanolic fermentation in permeabilized spheroplasts with glycolytic intermediates indicates additional target site(s) for the Tps1 control. Addition of Tre6P partially shifts the ethanol production rate and the metabolite pattern in permeabilized tps1Delta spheroplasts to those of the wild-type strain, but only with glucose as substrate. This is observed at a very high ratio of glucose to Tre6P. Inhibition of hexokinase activity by Tre6P is less efficiently counteracted by glucose in permeabilized spheroplasts compared to cell extracts, and this effect is largely abolished by deletion of TPS2 but not TPS1. In permeabilized spheroplasts, hexokinase activity is significantly lower in a tps2Delta strain compared to a wild-type strain and this difference is strongly reduced by additional deletion of TPS1. These results indicate that Tps1-mediated protein-protein interactions are important for control of glucose influx into yeast glycolysis, that Tre6P inhibition of hexokinase might not be competitive with respect to glucose in vivo and that also Tps2 appears to play a role in the control of hexokinase activity.  相似文献   

7.
Abstract A Saccharomyces cerevisiae gene for trehalose-6-phosphate synthase (TPS1) was sequenced. The gene appeared to code for a protein of 495 amino acid residues, giving the protein a molecular mass of 56 kDa. The TPS1 gene was able to restore both osmotolerance and trehalose accumulation during salt stress in an Escherichia coli strain mutated in the otsA gene encoding trehalose-6-phosphate synthase. Complementation studies with E. coli galU mutants showed that the TPS1-encoded trehalose-6-phosphate synthase is UDP-glucose-dependent. Sequence analysis and data base searches showed that TPS1 is allelic to GGS1, byp1, cif1 and fdp1 . A possible gene for trehalose-6-phosphate synthase in Methanobacterium thermoautotrophicum was identified.  相似文献   

8.
利用日本DDBJ数据库电子克隆了条斑紫菜的6-磷酸海藻糖合成酶基因(pytps),得到全长cDNA序列2727bp;经过ORF finder分析,获得了相应蛋白质的全长序列908Aa,分子量约为101.8kD。将条斑紫菜的6-磷酸海藻糖合成酶与多种模式生物大肠杆菌、裂殖酵母、拟南芥、水稻、秀丽隐杆线虫、黑腹果蝇的同源蛋白进行序列比对得到了聚类分析图表明它们之间具有一定的进化相关性功能结构域预测分析显示PyTPS拥有两个功能结构域Glyco.transf 20 domain和Trehalose.PPase domain,这对于进一步分析蛋白质结构与功能的关系将有很大的启示。  相似文献   

9.
Synthesis of trehalose in the yeast Saccharomyces cerevisiae is catalysed by the trehalose-6-phosphate (Tre6 P ) synthase/phosphatase complex, which is composed of at least three different subunits encoded by the genes TPS1 , TPS2 , and TSL1 . Previous studies indicated that Tps1 and Tps2 carry the catalytic activities of trehalose synthesis, namely Tre6 P synthase (Tps1) and Tre6 P phosphatase (Tps2), while Tsl1 was suggested to have regulatory functions. In this study two different approaches have been used to clarify the molecular composition of the trehalose synthase complex as well as the functional role of its potential subunits. Two-hybrid analyses of the in vivo interactions of Tps1, Tps2, Tsl1, and Tps3, a protein with high homology to Tsl1, revealed that both Tsl1 and Tps3 can interact with Tps1 and Tps2; the latter two proteins also interact with each other. In addition, trehalose metabolism upon heat shock was analysed in a set of 16 isogenic yeast strains carrying deletions of TPS1 , TPS2 , TSL1 , and TPS3 in all possible combinations. These results not only confirm the previously suggested roles for Tps1 and Tps2, but also provide, for the first time, evidence that Tsl1 and Tps3 may share a common function with respect to regulation and/or structural stabilization of the Tre6 P synthase/phosphatase complex in exponentially growing, heat-shocked cells.  相似文献   

10.
11.
垫状卷柏海藻糖-6-磷酸合成酶基因的克隆及功能分析   总被引:1,自引:0,他引:1  
林荆  付凤玲  蒋伟  牟禹  雍太明  李晚忱 《遗传》2010,32(5):498-504
海藻糖-6-磷酸合成酶(Trehalose-6-phosphate synthse, TPS)是植物海藻糖合成途径的关键酶, 在旱生卷柏等复苏植物对逆境胁迫应答中起重要作用。文章以我国特有旱生植物垫状卷柏(Selaginella pulvinata)为材料, 采用同源扩增与RACE技术相结合的方法克隆了海藻糖-6-磷酸合成酶基因SpTPS1, cDNA全长3 223 bp, 包括一个2 790 bp的开放阅读框, 推导的氨基酸序列与模式物种的海藻糖-6-磷酸合成酶具有较高的序列相似性, 催化活性中心保守位点基本一致。酵母功能互补实验证明, 用SpTPS1基因开放阅读框转化的海藻糖合成酶基因突变(tps1△)酵母菌株, 可恢复在以葡萄糖作为唯一碳源培养基上的生长, 说明垫状卷柏海藻糖-6-磷酸合成酶基因SpTPS1的编码蛋白具有生物活性, 可应用于植物抗逆性的转基因改良。  相似文献   

12.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

13.
The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1Delta mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1Delta mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39 degrees C and induced thermotolerance at 50 degrees C. The osmosensitive phenotype of the yeast tps1Delta mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.  相似文献   

14.
Abstract The expression of nitrite reductase has been tested in a wild-type strain of Pseudomonas aeruginosa (Pao1) as a function of nitrate concentration under anaerobic and aerobic conditions. Very low levels of basal expression are shown under non-denitrifying conditions (i.e. absence of nitrate, in both aerobic and anaerobic conditions); anaerobiosis is not required for high levels of enzyme production in the presence of nitrate. A Pseudomonas aeruginosa strain, mutated in the nitrite reductase gene, has been obtained by gene replacement. This mutant, the first of this species described up to now, is unable to grow under anaerobic conditions in the presence of nitrate. The anaerobic growth can be restored by complementation with the wild-type gene.  相似文献   

15.
16.
Trehalose is a non-reducing disaccharide of glucose that occurs in a large number of organisms, playing an important role in desiccation and heat stress protection. Trehalose accumulation has proven to be an effective way of increasing drought tolerance in both model plants such as tobacco and important crops such as potato or rice. In this work we aim to genetically engineer maize with the Arabidopsis thaliana trehalose phosphate synthase gene (AtTPS1), involved in trehalose biosynthesis via electroporation. A cassette harboring the AtTPS1 gene under the control of the CaMV35S promoter and the Bialaphos resistance gene Bar as a selective agent was inserted in the plasmid vector pGreen0229 and used to transform maize inbred line Pa91 via electroporation. Fifteen putative transgenic plants (T0 generation) were obtained. Transgene integration in T0 plants was analyzed by Southern-blot analysis. T0 plants had normal phenotypes, although smaller than wild type plants. Contrary to wild type plants, when sexual organs emerged, tassels appeared at least 15 days earlier than ears in the same plant, rendering impossible the self-pollination of the T0 plant. These plants were then crossed with wild type plants and in some cases T1 seeds were obtained. T1 seeds presented deformities, especially the lack of endosperm, but it was still possible to germinate some of these seeds. The so obtained plants were tested by Northern blot but no AtTPS1 gene expression was detected, a fact possibly due to the incomplete insertion of the AtTPS1 gene or an extremely low gene expression level.  相似文献   

17.
Abstract Total trehalose-6-phosphate synthase activity decreased in cell extracts from Candida utilis under conditions inducing activation of the regulatory trehalase by protein kinase catalysed phosphorylation. The synthase activity was reactivated by treatment with alkaline phosphatase revealing the presence of an enzyme whose activity is inactivated by reversible phosphorylation. The occurrence in the trehalose-6-phosphate synthase complex of a second synthase enzyme whose activity is not controlled by phosphorylation and dephosphorylation was demonstrated following gel filtration of cell extracts. The activity of the isolated enzymes was differently modified in vitro by the presence of alkaline phosphatase, ATP, glucose or protein kinase.  相似文献   

18.
Summary Eighteen mutant strains of the unicellular cyanobacterium Anacystis nidulans R2 that are unable to assimilate nitrate have been isolated after transposon Tn901 mutagenesis. Characterization of phenotypes and transformation tests have allowed the distinction of five different mutant types. The mutants exhibiting a nitrate reductase-less phenotype were identified as being affected in previously defined loci, as they could be transformed to the wild type by one of the plasmids pNR12, pNR63 or pNR193, which contain cloned genes of A. nidulans R2 involved in nitrate reduction. The mutations in strains FM2 and FM16 appear to affect two other genes involved in nitrate assimilation. Strain FM2 apparently bears a single mutation which results in both lack of nitrite reductase activity and loss of ammonium-promoted repression of nitrate reductase synthesis. FM16 has a low but significant level of nitrate reductase that is also freed from repression by ammonium, and an increased level of nitrite reductase activity. FM16 exhibited properties which indicate that this mutant strain might also be affected in the transport of nitrate into the cell.Abbreviations EDTA ethylenediamine-tetraacetic acid - MTA mixed alkyltrimethylammonium bromide - TES N-tris (hydroxymethyl)methyl-2-aminoethane sulfonic acid - Tricine N-[2-hydroxy-1,1-bis (hydroxymethyl)ethyl]-glycine - Tris Tris(hydroxymethyl)aminomethane  相似文献   

19.
20.
A homologous sequence was amplified from resurrection plant Selaginella pulvinta by RACE technique, proved to be the full-length cDNA of trehalose-6-phosphate synthase gene by homologous alignment and yeast complementation assay, and nominated as SpTPS1 gene. The open reading frame of this gene was truncated 225 bp at the 5′-end, resulting the N-terminal truncation modification of 75 amino acids for its encoding protein. The TPS1 deletion mutant strain YSH290 of the brewer's yeast transformed by the truncated gene SpTPS1Δ and its original full-length version restored growth on the medium with glucose as a sole carbon source and displayed growth curves with no significant difference, indicating their encoding proteins functioning as TPS enzyme. The TPS activity of the mutant strain transformed by the truncated gene SpTPS1Δ was about six fold higher than that transformed by its original version, reasoning that the extra N-terminal extension of the full-length amino acid sequence acts as an inhibitory domain to trehalose synthesis. However, the trehalose accumulation of the mutant strain transformed by the truncated gene SpTPS1Δ was only 8% higher than that transformed by its original version. This result is explained by the feedback balance of trehalose content coordinated by the comparative activities between trehalose synthase and trehalase. The truncated gene SpTPS1Δ is suggested to be used in transgenic operation, together with the inhibition of trehalase activity by the application of validamycin A or genetic deficiency of the endogenous trehalase gene, for the enhancement of trehalose accumulation and improvement of abiotic tolerance in transgenic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号