首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions have been established where the deactivation of the beta-lactamase from Staphylococcus aureus PC1 by the penicillin substrate, quinacillin, is close to complete but fully reversible. The temperature-dependence of the rate of re-activation indicated a half-life of about 170 min for the deactivated state at 0 degrees C. Measurement of the relative viscosity of mixtures of enzyme and quinacillin at 8.4 degrees C ruled out any significant difference in shape or solvation between the deactivated and the normal enzyme. C.d. measurements of the deactivated protein, separated from excess quinacillin, showed that the quinacillin side-chain chromophore was bound in an asymmetric environment. The ellipticity associated with the bound quinacillin chromophore decreased with the same first-order rate constant as that for reappearance of enzyme activity. These findings support the accumulation of a deactivated state that contains bound quinacillin or a derivative. Quinacillin caused a 3-fold increase in the rate of 3H exchange-out (at a rate that was low compared with that for the substantially unfolded or expanded protein). However, there was rapid exchange-out of about 50 3H atoms on addition of 1 M-urea to the deactivated enzyme, whereas the same concentration had no effect on the exchange-out of 3H from native enzyme. The interpretation that quinacillin increases the susceptibility of the native state to unfolding in the presence of urea is supported by the demonstration that SO4(2)- ions decreased the rate and extent of deactivation but had no effect on the rate of re-activation, as predicted from the observation that SO4(2)- ions, in competition with urea, stabilize the native state relative to the partially unfolded state H [Mitchinson & Pain (1985) J. Mol. Biol. 184, 331-342].  相似文献   

2.
3.
Previous studies demonstrated that alpha-synuclein (alpha-syn) fibrillization is inhibited by dopamine, and studies to understand the molecular basis of this process were conducted (Conway, K. A., Rochet, J. C., Bieganski, R. M., and Lansbury, P. T., Jr. (2001) Science 294, 1346-1349). Dopamine inhibition of alpha-syn fibrillization generated exclusively spherical oligomers that depended on dopamine autoxidation but not alpha-syn oxidation, because mutagenesis of Met, His, and Tyr residues in alpha-syn did not abrogate this inhibition. However, truncation of alpha-syn at residue 125 restored the ability of alpha-syn to fibrillize in the presence of dopamine. Mutagenesis and competition studies with specific synthetic peptides identified alpha-syn residues 125-129 (i.e. YEMPS) as an important region in the dopamine-induced inhibition of alpha-syn fibrillization. Significantly, the dopamine oxidation product dopaminochrome was identified as a specific inhibitor of alpha-syn fibrillization. Dopaminochrome promotes the formation of spherical oligomers by inducing conformational changes, as these oligomers regained the ability to fibrillize by simple denaturation/renaturation. Taken together, these data indicate that dopamine inhibits alpha-syn fibrillization by inducing structural changes in alpha-syn that can occur through the interaction of dopaminochrome with the 125YEMPS129 motif of alpha-syn. These results suggest that the dopamine autoxidation can prevent alpha-syn fibrillization in dopaminergic neurons through a novel mechanism. Thus, decreased dopamine levels in substantia nigra neurons might promote alpha-syn aggregation in Parkinson's disease.  相似文献   

4.
5.
Exopenicillinase of Bacillus cereus 569/H was cross-linked with toluene 2,4-diisocyanate in the presence of cephalothin, cloxacillin or no substrate. The derivatives show significant differences in susceptibility to inactivation by heat, urea, iodination or proteolysis. Such differences can be predicted from the contrasting effects of these substrates on the conformation of the enzyme.  相似文献   

6.
Human arylamine N-acetyltransferase 1 (NAT1) is a polymorphic phase II xenobiotic-metabolizing enzyme which catalyzes the biotransformation of primary aromatic amines, hydrazine drugs, and carcinogens. Structural and functional studies have shown that the NAT1 and factor XIII transglutaminase catalytic pockets are structurally related with the existence of a conserved catalytic triad (Cys-His-Asp). In addition, it has been reported that factor XIII transglutaminase activity could be regulated by nitric oxide (NO), in particular S-nitrosothiols (RSNO). We thus tested whether NAT1 could be a target of S-nitrosothiols. We show here that human NAT1 is reversibly inactivated by S-nitrosothiols such as SNAP (S-nitroso-N-acetyl-DL-penicillamine). A second-order rate constant for the inactivation of NAT1 by SNAP was determined (k(inact)=270M(-1)min(-1)) and shown to be in the same range of values reported for other enzymes. The inhibition of NAT1 by S-nitrosothiols was reversed by dithiothreitol and reduced glutathione, but not by ascorbate. As reported for some reactive cysteine-containing enzymes, our results suggest that inactivation of NAT1 by S-nitrosothiols is due to direct attack of the highly reactive cysteine residue in the enzyme active site on the sulfur of S-nitrosothiols to form a mixed disulfide between these NO-derived oxidants and NAT1. Finally, our findings suggest that, in addition to the polymorphic-dependent variation of NAT1 activity, NO-derived oxidants, in particular S-nitrosothiols, could also regulate NAT1 activity.  相似文献   

7.
Complex facilitative membrane transporters of specific ligands may operate via inner channels subject to conformational transitions. To describe some properties of these systems, we introduce here a kinetic model of coupled transport of two species, L and w, through a two-conformational pore. The basic assumptions of the model are: a) single-file of, at most, n molecules inside the channel; b) each pore state is open to one of the compartments only; c) there is at most only one vacancy per pore; d) inside the channel, a molecule of L occupies the same positions as a molecule of w; and e) there is at most only one molecule of L per pore. We develop a general representation of the kinetic diagram of the model that is formally similar to the one used to describe one-vacancy transport through a one-conformational single-file pore. In many cases of biological importance, L could be a hydrophilic (ionic or nonionic) ligand and w could be water. The model also finds application to describe solute (w) transport under saturation conditions. In this latter case, L would be another solute, or a tracer of w. We derive steady-state expressions for the fluxes of L and w, and for the permeability coefficients. The main results obtained from the analysis of the model are the following. 1) Under the condition of equilibrium of w, the expression derived for the flux of L is formally indistinguishable from the one obtainable from a standard four-state model of ligand transport mediated by a two-conformational transporter. 2) When L is a tracer of w, we can derive an expression for the ratio between the main isotope and tracer permeability coefficients (Pw/Pd). We find that the near-equilibrium permeability ratio satisfies (n - 1) < or = (Pw/Pd)eq < or = n, a result previously derived for the one-conformational, single-file pore for the case that n > or = 2. 3) The kinetic model studied here represents a generalization of the carrier concept. In fact, for the case that n = 1 (corresponding to the classical single-occupancy carrier), the near-equilibrium permeability ratio satisfies 0 < or = (Pw/Pd)eq < or = 1, which is characteristic of a carrier performing exchange-diffusion.  相似文献   

8.
9.
1. The penicillinase-catalysed hydrolysis of quinacillin was quenched by addition of 5 m-guanidinium chloride or 1% (w/v) sodium dodecyl sulphate, and the quenched reaction mixture was dialysed exhaustively against solutions of the denaturant. 2. Irreversibly bound quinacillin was shown by titration with HgCl2 to be covalently attached to the protein by the beta-lactam carboxyl group. 3. The derivative was found to be stable over the pH range 3.5-8.5. 4. Chymotryptic hydrolysis of the product and subsequent fractionation showed that quinacillin was bound to one or possibly two peptides.  相似文献   

10.
Although it has been known for many years that antibodies display properties characteristic of allosteric effectors, the molecular mechanisms responsible for these effects remain poorly understood. Here, we describe a single-domain antibody fragment (nanobody) that modulates protein function by constraining conformational change in the enzyme dihydrofolate reductase (DHFR). Nanobody 216 (Nb216) behaves as a potent allosteric inhibitor of DHFR, giving rise to mixed hyperbolic inhibition kinetics. The crystal structure of Nb216 in complex with DHFR reveals that the nanobody binds adjacent to the active site. Half of the epitope consists of residues from the flexible Met20 loop. This loop, which ordinarily oscillates between occluded and closed conformations during catalysis, assumes the occluded conformation in the Nb216-bound state. Using stopped flow, we show that Nb216 inhibits DHFR by stabilising the occluded Met20 loop conformation. Surprisingly, kinetic data indicate that the Met20 loop retains sufficient conformational flexibility in the Nb216-bound state to allow slow substrate turnover to occur.  相似文献   

11.
The multiple steady states in an isothermal, constant-density CSTR involving two-substrates, enzyme- catalyzed reactions is determined by a zero eigenvalue analysis. The hysteresis and bistability occurs for a certain range of the rate constant of product formation from a ternary complex, kES1S2MP+E. A two-parameter (kES1S2MP+E, k0MS1) bifurcation diagram for several different values of flow rate kS1̂ is also presented. It shows that, to maintain the existence of the steady state multiplicity under a fixed flow rate, the larger the rate constant kES1S2MP+E is, the larger the feed concentration of a substrate is required and the wider the range of that exists. To maintain the existence of the steady state multiplicity for a lower flow rate, it is required to reduce the feed concentration of substrates.  相似文献   

12.
13.
The oxidative decarboxylation of l-malate catalyzed by malic enzyme has been studied by stopped-flow spectrophotometry and by initial rate measurements with large concentrations of NADP+, malate, and Mn2+. The results show that hybride transfer is fast, t12 < 0.7 ms. The formation of enzyme-bound NADPH in an amount equivalent to about half of the enzyme active center concentration is followed by turnover at a rate which is initially faster than the steady-state rate, under conditions such that substrate inhibition by malate is observed in the steady state. The steady-state rate is reached after about 0.5 s. It is suggested that a conformational change in the abortive complex of enzyme, manganese, NADPH, and malate is responsible for the malate inhibition and for the slow approach to the true steady state. The relief of malate inhibition by increasing Mn2+ concentrations is described, and the results are described in relation to other evidence of nonidentical binding sites for, or negatively cooperative binding of, substrate and activator and possible half-of-the-sites reactivity.  相似文献   

14.
15.
P Graceffa  S S Lehrer 《Biochemistry》1984,23(12):2606-2612
Tropomyosin was labeled with a maleimide nitroxide spin-label attached to cysteine-190 via a succinimido ring which was subsequently opened by incubation at alkaline pH. Electron spin resonance (ESR) spectra showed a temperature-dependent equilibrium, below the main unfolding transition of tropomyosin, between labels which were restricted in their motion (strongly immobilized), predominating at low temperatures, and those which were highly mobile (weakly immobilized), predominating at higher temperatures. These label states were associated with two protein states from a comparison of the ESR spectral changes with the thermal unfolding profile of tropomyosin. The strongly immobilized labels were associated with the completely folded molded and the weakly immobilized labels with a partially unfolded (in the cysteine-190 region) state which is an intermediate in the thermal unfolding of tropomyosin. A spectral subtraction technique was used to measure the concentration ratio of strongly and weakly immobilized labels from which an equilibrium constant, K, was determined at different temperatures. A linear van't Hoff plot was obtained, indicating that the spin-labeled protein is in thermal equilibrium between these two conformational states with delta H = 17 kcal/mol, delta S = 56 cal/(deg X mol), and K = 1.0 at 34 degrees C. An upper limit of 10(7) s-1 for the conformational fluctuation was estimated from the shapes and separation of the two ESR spectral components. In contrast to the label with the opened succinimido ring, the spin-label with an intact succinimido ring remained strongly immobilized on the protein, indicating that in the partially unfolded state the molecule retains structure in the cysteine-190 region.  相似文献   

16.
6-O-methyl-, 6-O-propyl-, 6-O-pentyl- and 6-O-benzyl-D-galactose, and 6-O-methyl-, 6-O-propyl- and 6-O-pentyl-D-glucose inhibit the glucose-transport system of the human erythrocyte when added to the external medium. Penetration of 6-O-methyl-D-galactose is inhibited by D-glucose, suggesting that it is transported by the glucose-transport system, but the longer-chain 6-O-alkyl-D-galactoses penetrate by a slower D-glucose-insensitive route at rates proportional to their olive oil/water partition coefficients. 6-O-n-Propyl-D-glucose and 6-O-n-propyl-D-galactose do not significantly inhibit L-sorbose entry or D-glucose exit when present only on the inside of the cells whereas propyl-beta-D-glucopyranoside, which also penetrates the membrane slowly by a glucose-insensitive route, only inhibits L-sorbose entry or D-glucose exit when present inside the cells, and not when on the outside. The 6-O-alkyl-D-galactoses, like the other nontransported C-4 and C-6 derivatives, maltose and 4,6-O-ethylidene-D-glucose, protect against fluorodinitrobenzene inactivation, whereas propyl beta-D-glucopyranoside stimulates the inactivation. Of the transported sugars tested, those modified at C-1, C-2 and C-3 enhance fluorodinitrobenzene inactivation, where those modified at C-4 and C-6 do not, but are inert or protect against inactivation. An asymmetric mechanism is proposed with two conformational states in which the sugar binds to the transport system so that C-4 and C-6 are in contact with the solvent on the outside and C-1 is in contact with the solvent on the inside of the cell. It is suggested that fluorodinitrobenzene reacts with the form of the transport system that binds sugars at the inner side of the membrane. An Appendix describes the theoretical basis of the experimental methods used for the determination of kinetic constants for non-permeating inhibitors.  相似文献   

17.
18.
The soluble Escherichia coli coupling factor, EC F1 ATPase, was incubated at several temperatures ranging from ?10 to 37 °C before measuring enzyme activity at 10 °C. Under these conditions, the specific activity strongly depends on the preincubation temperature and it appears that ATPase can be reversibly switched from a stable low-activity state to a stable high-activity state. Sedimentation experiments ruled out the possibility that this change of state was due to cold dissociation of the major subunits. Preincubation at several concentrations of protein showed that the change of state corresponded to a monomolecular reaction scheme. The curve of specific activity versus temperature is sigmoidal, and the horizontal asymptote observed at low temperature is different from zero. Analysis of the stability of both states of the enzyme did not agree with the possibility that the low-activity state is an early intermediate of the process of cold inactivation. Experiments with enzyme missing the inhibitory subunit, ?, showed that this subunit is not needed for the conversion from the high-activity state to the low-activity state. The ΔH values for the change of state were calculated.  相似文献   

19.
Recent theoretical contributions to the elucidation of mechanisms for iron containing enzymes are reviewed. The method used in most of these studies is hybrid density functional theory with the B3LYP functional. Three classes of enzymes are considered, the mononuclear non-heme enzymes, enzymes containing iron dimers, and heme-containing enzymes. Mechanisms for both dioxygen and substrate activations are discussed. The reactions usually go through two half-cycles, where a high-valent intermediate Fe(IV)O species is created in the first half-cycle, and the substrate reactions involving this intermediate occur in the second half-cycle. Similarities between the three classes of enzymes dominate, but significant differences also exist.  相似文献   

20.
In this work we studied the reaction of four quinones, 1,4-benzoquinone (1,4-BQ), 2,5-dimethyl-1,4-benzoquinone (2,5-DM-1,4-BQ), tetrachloro-1,4-benzoquinone (TC-1,4-BQ) and 1,4-naphthoquinone (1,4-NQ) with jack bean urease in phosphate buffer, pH 7.8. The enzyme was allowed to react with different concentrations of the quinones during different incubation times in aerobic conditions. Upon incubation the samples had their residual activities assayed and their thiol content titrated. The titration carried out with use of 5,5'-di-thiobis(2-nitrobenzoic) acid was done to examine the involvement of urease thiol groups in the quinone-induced inhibition. The quinones under investigation showed two distinct patterns of behaviour, one by 1,4-BQ, 2,5-DM-1,4-BQ and TC-1,4-BQ, and the other by 1,4-NQ. The former consisted of a concentration-dependent inactivation of urease where the enzyme-inhibitor equilibrium was achieved in no longer than 10min, and of the residual activity of the enzyme being linearly correlated with the number of modified thiols in urease. We concluded that arylation of the thiols in urease by these quinones resulting in conformational changes in the enzyme molecule is responsible for the inhibition. The other pattern of behaviour observed for 1,4-NQ consisted of time- and concentration-dependent inactivation of urease with a nonlinear residual activity-modified thiols dependence. This suggests that in 1,4-NQ inhibition, in addition to the arylation of thiols, operative are other reactions, most likely oxidations of thiols provoked by 1,4-NQ-catalyzed redox cycling. In terms of the inhibitory strength, the quinones studied formed a series: 1,4-NQ approximately 2,5-DM-1,4-BQ<1,4-BQ相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号