首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The laminin-type globular (LG) domains of laminin alpha chains have been implicated in various cellular interactions that are mediated through receptors such as integrins, alpha-dystroglycan, syndecans, and the Lutheran blood group glycoprotein (Lu). Lu, an Ig superfamily transmembrane receptor specific for laminin alpha5, is also known as basal cell adhesion molecule (B-CAM). Although Lu/B-CAM binds to the LG domain of laminin alpha5, the binding site has not been precisely defined. To better delineate this binding site, we produced a series of recombinant laminin trimers containing modified alpha chains, such that all or part of alpha5LG was replaced with analogous segments of human laminin alpha1LG. In solid phase binding assays using a soluble Lu (Lu-Fc) composed of the Lu extracellular domain and human IgG1 Fc, we found that Lu bound to Mr5G3, a recombinant laminin containing alpha5 domains LN through LG3 fused to human laminin alpha1LG4-5. However, Lu/B-CAM did not bind other recombinant laminins containing alpha5LG3 unless alpha5LG1-2 was also present. A recombinant alpha5LG1-3 tandem lacking the laminin coiled coil (LCC) domain did not reproduce the activity of Lu/B-CAM binding. Therefore, proper structure of the alpha5LG1-3 tandem with the LCC domain was essential for the binding of Lu/B-CAM to laminin alpha5. Our results also suggest that the binding site for Lu/B-CAM on laminin alpha5 may overlap with that of integrins alpha3beta1 and alpha6beta1.  相似文献   

2.
Cell-matrix interactions are critical for tumor cell migration. Lutheran (Lu), also known as basal cell adhesion molecule (B-CAM), competes with integrins for binding to laminin α5, a subunit of LM-511, a major component of basement membranes. Here we show that the preferential binding of Lu/B-CAM to laminin α5 promotes tumor cell migration. The attachment of Lu/B-CAM transfectants to LM-511 was slightly weaker than that of control cells, and this was because Lu/B-CAM disturbed integrin binding to laminin α5. Lu/B-CAM induced a spindle cell shape with pseudopods and promoted cell migration on LM-511. In addition, blocking with an anti-Lu/B-CAM antibody led to a flat cell shape and inhibited migration on LM-511, similar to the effects of an activating integrin β1 antibody. We conclude that tumor cell migration on LM-511 requires that Lu/B-CAM competitively modulates cell attachment through integrins. We suggest that this competitive interaction is involved in a balance between static and migratory cell behaviors.  相似文献   

3.
Lutheran (Lu), an immunoglobulin superfamily transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a subunit of laminin-511 (LM-511) that is a major component of basement membranes in various tissues. Our previous study showed that Lu/B-CAM was cleaved by MT1-MMP and released from cell surfaces. In this study we examined the soluble Lu/B-CAM in culture media and in plasma of mice bearing HuH-7 hepatocellular carcinoma (HCC) cells and patients with HCC. Two HCC cell lines, HepG2 and HuH-7, released Lu/B-CAM into the culture media. Although Lu/B-CAM was cleaved by MT1-MMP in HuH-7 cells, HepG2 cells released Lu/B-CAM in a MMP-independent manner. The concentration of Lu/B-CAM released into mouse plasma correlated with tumor size. Moreover the soluble Lu/B-CAM in plasma of HCC patients was significantly decreased after resection of the tumor. Immunohistochemical studies showed that although the expression of Lu/B-CAM was observed in most HCCs, MT1-MMP was not always expressed in tumor tissues, suggesting that a part of Lu/B-CAM in plasma of HCC patients was also released in a MMP-independent manner. In vitro studies showed that the soluble Lu/B-CAM released from HCC cells bound to LM-511. Moreover the soluble Lu/B-CAM influenced cell migration on LM-511. These results suggest that soluble Lu/B-CAM serves as not only a novel marker for HCC but also a modulator in tumor progression.  相似文献   

4.

Background

The Lutheran blood group glycoprotein (Lu), an Ig superfamily (IgSF) transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a major component of basement membranes in various tissues. Previous reports have shown that Lu/B-CAM binding to laminin α5 contributes to sickle cell vaso-occlusion. However, as there are no useful tools such as function-blocking antibodies or drugs, it is unclear how epithelial and sickled red blood cells adhere to laminin α5 via Lu/B-CAM.

Methodology/Principal Findings

In this study, we discovered a function-blocking antibody that inhibits Lu binding to laminin α5 using a unique binding assay on tissue sections. To characterize the function-blocking antibody, we identified the site on Lu/B-CAM recognized by this antibody. The extracellular domain of Lu/B-CAM contains five IgSF domains, D1-D2-D3-D4-D5. The antibody epitope was localized to D2, but not to the D3 domain containing the major part of the laminin α5 binding site. Furthermore, mutagenesis studies showed that Arg175, the LU4 blood group antigenic site, was crucial for forming the epitope and the antibody bound sufficiently close to sterically hinder the interaction with α5. Cell adhesion assay using the antibody also showed that Lu/B-CAM serves as a secondary receptor for the adhesion of carcinoma cells to laminin α5.

Conclusion/Significance

This function-blocking antibody against Lu/B-CAM should be useful for not only investigating cell adhesion to laminin α5 but also for developing drugs to inhibit sickle cell vaso-occlusion.  相似文献   

5.
Laminins are the major noncollagenous glycoproteins of all basal laminae (BLs). They are α/β/γ heterotrimers assembled from 10 known chains, and they subserve both structural and signaling roles. Previously described mutations in laminin chain genes result in diverse disorders that are manifested postnatally and therefore provide little insight into laminin''s roles in embryonic development. Here, we show that the laminin α5 chain is required during embryogenesis. The α5 chain is present in virtually all BLs of early somite stage embryos and then becomes restricted to specific BLs as development proceeds, including those of the surface ectoderm and placental vasculature. BLs that lose α5 retain or acquire other α chains. Embryos lacking laminin α5 die late in embryogenesis. They exhibit multiple developmental defects, including failure of anterior neural tube closure (exencephaly), failure of digit septation (syndactyly), and dysmorphogenesis of the placental labyrinth. These defects are all attributable to defects in BLs that are α5 positive in controls and that appear ultrastructurally abnormal in its absence. Other laminin α chains accumulate in these BLs, but this compensation is apparently functionally inadequate. Our results identify new roles for laminins and BLs in diverse developmental processes.  相似文献   

6.
Laminin trimers composed of α, β, and γ chains are major components of basal laminae (BLs) throughout the body. To date, three α chains (α1–3) have been shown to assemble into at least seven heterotrimers (called laminins 1–7). Genes encoding two additional α chains (α4 and α5) have been cloned, but little is known about their expression, and their protein products have not been identified. Here we generated antisera to recombinant α4 and α5 and used them to identify authentic proteins in tissue extracts. Immunoprecipitation and immunoblotting showed that α4 and α5 assemble into four novel laminin heterotrimers (laminins 8–11: α4β1γ1, α4β2γ1, α5β1γ1, and α5β2γ1, respectively). Using a panel of nucleotide and antibody probes, we surveyed the expression of α1-5 in murine tissues. All five chains were expressed in both embryos and adults, but each was distributed in a distinct pattern at both RNA and protein levels. Overall, α4 and α5 exhibited the broadest patterns of expression, while expression of α1 was the most restricted. Immunohistochemical analysis of kidney, lung, and heart showed that the α chains were confined to extracellular matrix and, with few exceptions, to BLs. All developing and adult BLs examined contained at least one α chain, all α chains were present in multiple BLs, and some BLs contained two or three α chains. Detailed analysis of developing kidney revealed that some individual BLs, including those of the tubule and glomerulus, changed in laminin chain composition as they matured, expressing up to three different α chains and two different β chains in an elaborate and dynamic progression. Interspecific backcross mapping of the five α chain genes revealed that they are distributed on four mouse chromosomes. Finally, we identified a novel full-length α3 isoform encoded by the Lama3 gene, which was previously believed to encode only truncated chains. Together, these results reveal remarkable diversity in BL composition and complexity in BL development.  相似文献   

7.
Lutheran (Lu) blood group and basal cell adhesion molecule (B-CAM) antigens reside on two glycoprotein (gp) isoforms Lu and Lu(v13) that belong to the Ig superfamily and differ only by the size of their cytoplasmic tail. Lu/B-CAM gps have been recognized as laminin alpha5 receptors on red blood cells and epithelial cells in multiple tissues. It has been shown that sickle red cells exhibit enhanced adhesion to laminin alpha5 when intracellular cAMP is up-regulated by physiological stimuli such as epinephrine and that this signaling pathway is protein kinase A- and Lu/B-CAM-dependent. In this study, we analyzed the relationship between the phosphorylation status of Lu/B-CAM gps and their adhesion function to laminin alpha5. We showed that Lu isoform was phosphorylated in sickle red cells as well as in erythroleukemic K562 and epithelial Madin-Darby canine kidney cells and that this phosphorylation is enhanced by different stimuli of the PKA pathway. Lu gp is phosphorylated by glycogen synthase kinase 3 beta, casein kinase II, and PKA at serines 596, 598, and 621, respectively. Alanine substitutions of serines 596 and 598 abolished phosphorylation by glycogen synthase kinase 3 beta and casein kinase II, respectively, but had no effect on adhesion of K562 cells to laminin under flow conditions. Conversely, mutation of serine 621 prevented phosphorylation by PKA and dramatically reduced cell adhesion. Furthermore, stimulation of K562 cells by epinephrine increased Lu gp phosphorylation by PKA and enhanced adhesion to laminin. It is postulated that modulation of the phosphorylation state of Lu gp might be a critical factor for the sickle red cells adhesiveness to laminin alpha5 in sickle cell disease.  相似文献   

8.
Laminins, heterotrimers of α, β, and γ chains, are prominent constituents of basal laminae (BLs) throughout the body. Previous studies have shown that laminins affect both myogenesis and synaptogenesis in skeletal muscle. Here we have studied the distribution of the 10 known laminin chains in muscle and peripheral nerve, and assayed the ability of several heterotrimers to affect the outgrowth of motor axons. We show that cultured muscle cells express four different α chains (α1, α2, α4, and α5), and that developing muscles incorporate all four into BLs. The portion of the muscle's BL that occupies the synaptic cleft contains at least three α chains and two β chains, but each is regulated differently. Initially, the α2, α4, α5, and β1 chains are present both extrasynaptically and synaptically, whereas β2 is restricted to synaptic BL from its first appearance. As development proceeds, α2 remains broadly distributed, whereas α4 and α5 are lost from extrasynaptic BL and β1 from synaptic BL. In adults, α4 is restricted to primary synaptic clefts whereas α5 is present in both primary and secondary clefts. Thus, adult extrasynaptic BL is rich in laminin 2 (α2β1γ1), and synaptic BL contains laminins 4 (α2β2γ1), 9 (α4β2γ1), and 11 (α5β2γ1). Likewise, in cultured muscle cells, α2 and β1 are broadly distributed but α5 and β2 are concentrated at acetylcholine receptor–rich “hot spots,” even in the absence of nerves. The endoneurial and perineurial BLs of peripheral nerve also contain distinct laminin chains: α2, β1, γ1, and α4, α5, β2, γ1, respectively. Mutation of the laminin α2 or β2 genes in mice not only leads to loss of the respective chains in both nerve and muscle, but also to coordinate loss and compensatory upregulation of other chains. Notably, loss of β2 from synaptic BL in β2−/− “knockout” mice is accompanied by loss of α5, and decreased levels of α2 in dystrophic α2dy/dy mice are accompanied by compensatory retention of α4. Finally, we show that motor axons respond in distinct ways to different laminin heterotrimers: they grow freely between laminin 1 (α1β1γ1) and laminin 2, fail to cross from laminin 4 to laminin 1, and stop upon contacting laminin 11. The ability of laminin 11 to serve as a stop signal for growing axons explains, in part, axonal behaviors observed at developing and regenerating synapses in vivo.  相似文献   

9.
Most interstitia between epithelial and endothelial cells contain basal laminae (BLs), as defined by electron microscopy. However, in liver, the sinusoidal interstitium (called space of Disse) between hepatocytes and sinusoidal endothelial cells (SECs) lacks BLs. Because laminins are major components of BLs throughout the body, whether laminins exist in sinusoids has been a controversial issue. Despite recent advances, the distribution and expression of laminin chains have not been well defined in mammalian liver. Here, using a panel of antibodies, we examined laminins in normal and regenerating mouse livers. Of alpha chains, alpha5 was widely observed in all BLs except for sinusoids, while the other alpha chains were variously expressed in Glisson's sheath and central veins. Laminin gamma1 was also distributed to all BLs except for sinusoids. Although the beta2 chain was observed in all BLs and sinusoids, the expression of beta1 chain was restricted to Glisson's sheath. Detailed analysis of regenerating liver revealed that alpha1 and gamma1 chains appeared in sinusoids and were produced by stellate cells. The staining of alpha1 and gamma1 chains reached its maximum intensity at 6 days after two-thirds partial hepatectomy (PHx). Moreover, in vitro studies showed that alpha1-containing laminin promoted spreading of sinusoidal endothelial cells (SECs) isolated from normal liver, but not other hepatic cells. In addition, SECs isolated from regenerating liver elongated pseudopodia on alpha1-containing laminin more so than did cells from normal liver. The transient expression of laminin alpha1 may promote formation of sinusoids after PHx.  相似文献   

10.
A prominent feature of synaptic maturation at the neuromuscular junction (NMJ) is the topological transformation of the acetylcholine receptor (AChR)-rich postsynaptic membrane from an ovoid plaque into a complex array of branches. We show here that laminins play an autocrine role in promoting this transformation. Laminins containing the α4, α5, and β2 subunits are synthesized by muscle fibers and concentrated in the small portion of the basal lamina that passes through the synaptic cleft at the NMJ. Topological maturation of AChR clusters was delayed in targeted mutant mice lacking laminin α5 and arrested in mutants lacking both α4 and α5. Analysis of chimeric laminins in vivo and of mutant myotubes cultured aneurally demonstrated that the laminins act directly on muscle cells to promote postsynaptic maturation. Immunohistochemical studies in vivo and in vitro along with analysis of targeted mutants provide evidence that laminin-dependent aggregation of dystroglycan in the postsynaptic membrane is a key step in synaptic maturation. Another synaptically concentrated laminin receptor, Bcam, is dispensable. Together with previous studies implicating laminins as organizers of presynaptic differentiation, these results show that laminins coordinate post- with presynaptic maturation.  相似文献   

11.
To assess whether cells react differently towards a population of several laminin isoforms, as found in vivo, vs. a single isoform, we have compared the biological activity of kidney laminins to that of pure laminin 1. The kidney laminin preparation contained laminin 1 and further isoforms. Both substrates induced adhesion of a large spectrum of cell types, with kidney laminins being the most active. Unfolding of the coil-coiled conformation of the kidney isoforms negatively affected cell adhesion-promoting activity, which indicated that conformation-dependent cell binding is a characteristic feature of many or all laminins. Cellular interactions with kidney laminins were mediated by alpha3beta1 and alpha6beta1 integrins, with the contribution of alpha3beta1 being apparently lower than that of alpha6beta1 integrins. Immunofluorescence staining of vinculin and integrin subunits decorated focal adhesions on kidney laminins which differed in morphology from those formed on laminin 1 alone, in spite of the presence of the latter in the kidney preparation. These observations collectively indicate that tissue specific but often overlapping expression of laminin isoforms might modulate cell behavior by the activation of distinct sets of integrins and by the induction of distinct molecular assemblies within the cell adhesion signaling complexes.  相似文献   

12.
Laminin 5 Binds the NC-1 Domain of Type VII Collagen   总被引:15,自引:0,他引:15       下载免费PDF全文
Mutational analyses of genes that encode components of the anchoring complex underlying the basolateral surface of external epithelia indicate that this structure is the major element providing for resistance to external friction. Ultrastructurally, laminin 5 (α3β3γ2; a component of the anchoring filament) appears as a thin filament bridging the hemidesmosome with the anchoring fibrils. Laminin 5 binds the cell surface through hemidesmosomal integrin α6β4. However, the interaction of laminin 5 with the anchoring fibril (type VII collagen) has not been elucidated. In this study we demonstrate that monomeric laminin 5 binds the NH2-terminal NC-1 domain of type VII collagen. The binding is dependent upon the native conformation of both laminin 5 and type VII collagen NC-1. Laminin 6 (α3β1γ1) has no detectable affinity for type VII collagen NC-1, indicating that the binding is mediated by the β3 and/or γ2 chains of laminin 5. Approximately half of the laminin 5 solubilized from human amnion or skin is covalently complexed with laminins 6 or 7 (α3β2γ1). The adduction occurs between the NH2 terminus of laminin 5 and the branch point of the short arms of laminins 6 or 7. The results are consistent with the presumed orientation of laminin 5, having the COOH-terminal G domain apposed to the hemidesmosomal integrin, and the NH2-terminal domains within the lamina densa. The results also support a model predicting that monomeric laminin 5 constitutes the anchoring filaments and bridges integrin α6β4 with type VII collagen, and the laminin 5–6/7 complexes are present within the interhemidesmosomal spaces bound at least by integrin α3β1 where they may mediate basement membrane assembly or stability, but contribute less significantly to epithelial friction resistance.  相似文献   

13.
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.  相似文献   

14.
The ligand specificity of the alpha 3A beta 1 integrin was analyzed using K562 cells transfected with full-length alpha 3A cDNA and was compared with that of alpha 6A beta 1 in similarly transfected K562 cells. Clones were obtained that showed comparable surface expression of either alpha 3A beta 1 or alpha 6A beta 1 integrins. Those expressing alpha 3A beta 1 attached to and spread on immunopurified human kalinin and cellular matrices containing human kalinin, which is a particular isoform of laminin. In addition, alpha 3A transfectants adhered to bovine kidney laminins possessing a novel A chain variant. Binding to kalinin was blocked by a monoclonal antibody against the A chain constituent of kalinin and adhesion to both kalinin and kidney laminins by anti-alpha 3 and beta 1 monoclonal antibodies. The alpha 3A transfected cells bound more strongly to kalinin and bovine kidney laminins after treatment with the beta 1 stimulatory antibody TS2/16. A distinctly weaker and activation-dependent adhesion of alpha 3A transfectants was observed on human placental laminins possessing the Am chain variant (merosin), and no adhesion occurred on bovine heart laminins and murine EHS tumor laminin. Further inactive substrates were fibronectin, nidogen, and collagen types IV and VI, indicating that the alpha 3A beta 1 integrin is a much less promiscuous receptor than thought before. By contrast, alpha 6A transfected cells adhered to all laminin isoforms when stimulated with TS2/16. Adhesion also occurred only on bovine kidney laminins in the absence of TS2/16. These results demonstrate that both alpha 3A beta 1 and alpha 6A beta 1 integrins are typical laminin receptors but that their affinity and activation dependence for binding to various laminin isoforms differ considerably.  相似文献   

15.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

16.
The basement membrane (BM) proteins laminins, which consist of α, β, and γ chains, support tissue structures and cellular functions. To date only α4 and α5 types of laminins have been identified in the BMs of blood vessels. Our recent study suggested the presence of novel α3B-containing laminins in vascular BMs. Here we identified and characterized the third member of vascular laminins, laminin-3B11 (Lm3B11). RT-PCR analysis showed that microvascular endothelial (MVE) cells and umbilical vein endothelial cells expressed the messages for the α3B, β1, β2, and γ1 chains. In the culture of MVE cells, α3B was associated with β1 and γ1, producing Lm3B11. Recombinant Lm3B11 was overexpressed by introducing the cDNAs of the three chains into HEK-293 cells and purified to homogeneity. Purified Lm3B11 exhibited relatively weak cell adhesion activity through both α3β1 and α6β1 integrins. Most characteristically, Lm3B11 strongly stimulated MVE cells to extend many lamellipodial protrusions. This pseudopodial branching was blocked by an inhibitor for Src or phosphatidylinositol 3-kinase. Consistently, Lm3B11 stimulated the phosphorylation of Src and Akt more strongly than other laminins, suggesting that the integrin-derived signaling is mediated by these factors. The unique activity of Lm3B11 appears to be favorable to the branching of capillaries and venules.  相似文献   

17.
The transforming growth factors-β (TGFs-β) family of genes plays important roles in cell growth and differentiation in many cell types. TGFβ modulates the synthesis and accumulation of extracellular matrix (ECM) components and the expression of cell surface receptors for ECM components. TGFβ is increased in alveolar lining fluid during inflammatory reactions of the lung and has been identified in alveolar epithelial cells of developing lungs and hyperplastic type II cells during repair. However, little is known about how TGFβ may regulate expression of extracellular matrix proteins and ECM receptors in lung alveolar epithelial cells. Laminin, a major glycoprotein component of epithelial basement membrane, is synthesized and secreted by alveolar epithelial cells. To study the effects of TGFβ on modulation of laminin and its integrin receptors α6β1 and α3β1 in lung alveolar epithelial cells, a rat alveolar type II cell-derived cell line, LM5, was incubated with TGFβ1 (0-100 pg/ml) in serum-free medium for 0-16 h. We examined the expression of integrin subunits and laminin β2 chain (s-laminin) mRNAs and protein expression. By Northern blot analysis, TGFβ1 induced dose-dependent increases in α6 and β1 mRNA levels. TGFβ1 also increased the expression of laminin β2 chain mRNA at 12-16 h poststimulation. In contrast, TGFβ decreased α3 mRNA expression. Immunoprecipitation studies of TGFβ1-treated cells showed increased surface expression of both α6 and β1 protein while surface expression of the α3 integrin subunit was decreased. The same treatment resulted in increased laminin protein expression. These data suggest that TGFβ1 may regulate alveolar epithelial cell differentiation in part through its modulation of integrins and laminin chains.  相似文献   

18.
Integrins alpha3beta1 and alpha6beta1 are two major laminin receptors expressed on the surface of mammalian cells. Interactions of cells with laminins through these integrins play important roles in cell adhesion, differentiation, motility, and matrix assembly. To determine the binding specificity and affinity of these integrins toward various types of laminins at the level of direct protein-protein interactions, we purified integrins alpha3beta1 and alpha6beta1 from human placenta, and examined their binding to a panel of laminin isoforms, each containing distinct alpha chains (i.e., laminin-1, laminin-2/4, laminin-5, laminin-8, and laminin-10/11). Integrin alpha3beta1 showed clear specificity for laminin-5 and laminin-10/11, with no significant binding to laminin-1, laminin-2/4, and laminin-8. In contrast, integrin alpha6beta1 showed a broad spectrum of specificity, with apparent binding affinity in the following order: laminin-10/11 > laminin-5 > laminin-1 > laminin-2/4 congruent with laminin-8. Integrin titration assays demonstrated that laminin-10/11 was the most preferred ligand among the five distinct laminin isoforms for both alpha3beta1 and alpha6beta1 integrins. Given that laminin-10/11 is the major basement membrane component of many adult tissues, the interaction of laminin-10/11 with these integrins should play a central role in the adhesive interactions of epithelial cells with underlying basement membranes.  相似文献   

19.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

20.
The interactions of cells with basement membranes are primarily mediated via the engagement of laminins by a group of integrin family proteins, including integrins alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4. To explore the ligand-binding specificities of these laminin-binding integrins, we produced these integrins, including two alpha7beta1 splice variants (alpha7X1beta1 and alpha7X2beta1), as soluble recombinant proteins and determined their binding specificities and affinities toward a panel of purified laminin isoforms containing distinct alpha chains. Among the five laminin-binding integrins investigated, alpha3beta1 and alpha6beta4 exhibited a clear specificity for laminin-332 (alpha3beta3gamma2) and laminin-511 (alpha5beta1gamma1)/521 (alpha5beta2gamma1), while integrin alpha6beta1 showed a broad specificity, binding to all laminin isoforms with a preference for laminin-111 (alpha1beta1gamma1), laminin-332 and laminin-511/521. The two alpha7beta1 variants were distinct from alpha3beta1, alpha6beta1 and alpha6beta4 in that they did not bind to laminin-332. alpha7X1beta1 bound to all laminins, except laminin-332, with a preference for laminin-211 (alpha2beta1gamma1)/221 (alpha2beta2gamma1) and laminin-511/521, while alpha7X2beta1 bound preferentially to laminin-111 and laminin-211/221. Laminin-511/521 was the most preferred ligand for all the laminin-binding integrins, except for alpha7X2beta1, whereas laminin-411 was the poorest ligand, capable of binding to alpha6beta1 and alpha7X1beta1 with only modest binding affinities. These comprehensive analyses of the interactions between laminin-binding integrins and a panel of laminins clearly demonstrate that the isoforms of both integrins and laminins differ in their binding specificities and affinities, and provide a molecular basis for better understanding of the adhesive interactions of cells with basement membranes of defined laminin compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号