首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factor-beta1 (TGF-beta1) is a key cytokine involved in the pathogenesis of fibrosis in many organs. We previously demonstrated in renal proximal tubular cells that the engagement of the extracellular polysaccharide hyaluronan with its receptor CD44 attenuated TGF-beta1 signaling. In the current study we examined the potential mechanism by which the interaction between hyaluronan (HA) and CD44 regulates TGF-beta receptor function. Affinity labeling of TGF-beta receptors demonstrated that in the unstimulated cells the majority of the receptor partitioned into EEA-1-associated non-lipid raft-associated membrane pools. In the presence of exogenous HA, the majority of the receptors partitioned into caveolin-1 lipid raft-associated pools. TGF-beta1 increased the association of activated/phosphorylated Smad proteins with EEA-1, consistent with activation of TGF-beta1 signaling following endosomal internalization. Following addition of HA, caveolin-1 associated with the inhibitory Smad protein Smad7, consistent with the raft pools mediating receptor turnover, which was facilitated by HA. Antagonism of TGF-beta1-dependent Smad signaling and the effect of HA on TGF-beta receptor associations were inhibited by depletion of membrane cholesterol using nystatin and augmented by inhibition of endocytosis. The effect of HA on TGF-beta receptor trafficking was inhibited by inhibition of HA-CD44 interactions, using blocking antibody to CD44 or inhibition of MAP kinase activation. In conclusion, we have proposed a model by which HA engagement of CD44 leads to MAP kinase-dependent increased trafficking of TGF-beta receptors to lipid raft-associated pools, which facilitates increased receptor turnover and attenuation of TGF-beta1-dependent alteration in proximal tubular cell function.  相似文献   

2.
It has been widely assumed that the interaction of transforming growth factor-beta 1 (TGF-beta 1) with its serum-binding protein, alpha 2-macroglobulin (alpha 2M), mediates the rapid clearance of TGF-beta 1 from the circulation. To test this, we have analyzed the effect of TGF-beta 1 binding on the conformational state of alpha 2M. Our results demonstrate that the binding of TGF-beta 1 to alpha 2M does not lead to the conformational change in the alpha 2M molecule that is required for the clearance of the alpha 2M.TGF-beta 1 complex via the alpha 2M receptor. Furthermore, endogenous TGF-beta 1 is associated with the conformationally unaltered slow clearance form of alpha 2M. Clearance studies in mice show that the half-life of 125I-TGF-beta 1 in the circulation (1.6 +/- 0.71 min) is not affected by blocking the alpha 2M receptor with excess conformationally altered alpha 2M. These results suggest that TGF-beta 1 is rapidly cleared from the circulation after injection by a pathway not involving alpha 2M.  相似文献   

3.
The expression of transforming growth factor-beta 1 (TGF-beta 1), and transforming growth factor-beta receptor type II (T beta R-II), were evaluated in periovulatory marmoset ovaries. Histochemical methods were used, in particular double-labelling techniques, in order to correlate growth factor/receptor expression with proliferation (Ki 67), apoptosis (TUNEL method) and luteinization (3 beta-hydroxysteroid dehydrogenase (3 beta-HSD)). The latter was used as a luteinization marker. Periovulatory ovaries are especially suited for studying all aspects since they typically consist of small non-luteinized follicles, large luteinizing follicles and corpora lutea accessoria (Clas), which have developed from large luteinizing follicles. TGF-beta 1 and T beta R-II expression was found in luteinizing theca cells of large periovulatory follicles and in all luteal cells of Clas. Non-luteinized theca cells, including those of small follicles were always devoid of any immunostaining. Granulosa cells of small follicles were immunopositive for T beta R-II. Large follicles with granulosa cell immunoreactivity of both antibodies coexisted with non-reactive follicles of comparable size. The highest activity of the luteal marker enzyme 3 beta-HSD was co-localized in the same cells that expressed TGF-beta 1 and T beta R-II. The double-labelling experiments revealed that TGF-beta 1 and T beta R-II expression is not correlated with proliferation or apoptosis of follicular cells. Our results indicate that TGF-beta 1 and T beta R-II participate in differentiation processes, i.e. luteinization, rather than proliferation. In particular, the dynamics of T beta R-II expression appear highly related to the process of luteinization.  相似文献   

4.
5.
Determination of the functional relationship between the transforming growth factor-beta (TGFbeta) receptor proteins endoglin and ALK1 is essential to the understanding of the human vascular disease, hereditary hemorrhagic telangiectasia. TGFbeta1 caused recruitment of ALK1 into a complex with endoglin in human umbilical vein endothelial cells (HUVECs). Therefore, we examined TGFbeta receptor-dependent phosphorylation of endoglin by the constitutively active forms of the TGFbeta type I receptors ALK1, ALK5, and the TGFbeta type II receptor, TbetaRII. Of these receptors, TbetaRII preferentially phosphorylated endoglin on cytosolic domain serine residues Ser(634) and Ser(635). Removal of the carboxyl-terminal tripeptide of endoglin, which comprises a putative PDZ-liganding motif, dramatically increased endoglin serine phosphorylation by all three receptors, suggesting that the PDZ-liganding motif is important for the regulation of endoglin phosphorylation. Constitutively active (ca)ALK1, but not caALK5, phosphorylated endoglin on cytosolic domain threonine residues. caALK1-mediated threonine phosphorylation required prior serine phosphorylation, suggesting a sequential mechanism of endoglin phosphorylation. Wild-type, but not a threonine phosphorylation-defective endoglin mutant blocked cell detachment and the antiproliferative effects of caALK1 expressed in HUVECs. These results suggest that ALK1 is a preferred TGFbeta receptor kinase for endoglin threonine phosphorylation in HUVECs and indicate a role for endoglin phosphorylation in the regulation of endothelial cell adhesion and growth by ALK1.  相似文献   

6.
7.
Endoglin is an auxiliary component of the transforming growth factor-beta (TGF-beta) receptor system, able to associate with the signaling receptor types I (TbetaRI) and II (TbetaRII) in the presence of ligand and to modulate the cellular responses to TGF-beta1. Endoglin cannot bind ligand on its own but requires the presence of the signaling receptors, supporting a critical role for the interaction between endoglin and TbetaRI or TbetaRII. This study shows that full-length endoglin interacts with both TbetaRI and TbetaRII, independently of their kinase activation state or the presence of exogenous TGF-beta1. Truncated constructs encoding either the extracellular or the cytoplasmic domains of endoglin demonstrated that the association with the signaling receptors occurs through both extracellular and cytoplasmic domains. However, a more specific mapping revealed that the endoglin/TbetaRI interaction was different from that of endoglin/TbetaRII. TbetaRII interacts with the amino acid region 437-558 of the extracellular domain of endoglin, whereas TbetaRI interacts not only with the region 437-558 but also with the protein region located between amino acid 437 and the N terminus. Both TbetaRI and TbetaRII interact with the cytoplasmic domain of endoglin, but TbetaRI only interacts when the kinase domain is inactive, whereas TbetaRII remains associated in its active and inactive forms. Upon association, TbetaRI and TbetaRII phosphorylate the endoglin cytoplasmic domain, and then TbetaRI, but not TbetaRII, kinase dissociates from the complex. Conversely, endoglin expression results in an altered phosphorylation state of TbetaRII, TbetaRI, and downstream Smad proteins as well as a modulation of TGF-beta signaling, as measured by the reporter gene expression. These results suggest that by interacting through its extracellular and cytoplasmic domains with the signaling receptors, endoglin might affect TGF-beta responses.  相似文献   

8.
The binding of three radiolabeled isoforms of platelet-derived growth factor (PDGF), 125I-PDGF-AA, 125I-PDGF-AB, and 125I-PDGF-BB, is differentially affected by exposure of quiescent 3T3 cells to transforming growth factor-beta (TGF-beta). By 24 h after exposure to TGF-beta, binding of 125I-PDGF-AA and 125I-PDGF-AB is almost completely lost, whereas binding of 125I-PDGF-BB is reduced by only 40%. The loss of PDGF-binding sites caused by TGF-beta is time- and concentration-dependent and reflects a change in the pattern of expression of receptor subunits; the number of alpha-subunits decreases, and the number of beta-subunits increases. The loss of binding sites for PDGF-AA is accompanied by a decreased mitogenic response to PDGF-AA but not to PDGF-AB or PDGF-BB. These results suggest that TGF-beta may differentially regulate the expression of PDGF-binding sites and the mitogenic responsiveness toward the three PDGF isoforms. TGF-beta did not stimulate synthesis of PDGF A-chain mRNA or PDGF-AA protein, and PDGF-AA receptors could not be restored by the presence of suramin, suggesting that the loss of binding sites may result from direct effects on receptor expression rather than autocrine down-regulation by PDGF-AA.  相似文献   

9.
Malaria has re-emerged as a global health problem, leading to an increased focus on the cellular and molecular biology of the mosquito Anopheles and the parasite Plasmodium with the goal of identifying novel points of intervention in the parasite life cycle. Anti-parasite defenses mounted by both mammalian hosts and Anopheles can suppress the growth of Plasmodium. Nonetheless, the parasite is able to escape complete elimination in vivo, perhaps by thwarting or co-opting these mechanisms for its own survival, as do numerous other pathogens. Among the defense systems used by the mammalian host against Plasmodium is the synthesis of nitric oxide (NO), catalyzed by an inducible NO synthase (iNOS). Nitric oxide produced by the action of an inducible Anopheles stephensi NO synthase (AsNOS) may be central to the anti-parasitic arsenal of this mosquito. In mammals, iNOS can be modulated by members of the transforming growth factor-beta (TGF-beta) cytokine superfamily. Transforming growth factor-beta is produced as an inactive precursor that is activated following dissociation of certain inhibitory proteins, a process that can be promoted by reaction products of NO as well as by hemin. Ingestion by Anopheles of blood containing Plasmodium initiates parasite development, blood digestion which results in the accumulation of hematin (hemin) in the insect midgut, and induction of both AsNOS and TGF-beta-like (As60A) gene expression in the midgut epithelium. Active mammalian TGF-beta1 can be detected in the A. stephensi midgut up to 48h post-ingestion and latent TGF-beta1 can be activated by midgut components in vitro, a process that is potentiated by NO and that may involve hematin. Further, mammalian TGF-beta1 is perceived as a cytokine by A. stephensi cells in vitro and can alter Plasmodium development in vivo. Bloodfeeding by Anopheles, therefore, results in a juxtaposition of evolutionarily conserved mosquito and mammalian TGF-beta superfamily homologs that may influence transmission dynamics of Plasmodium in endemic regions.  相似文献   

10.
Endoglin, a dimeric membrane glycoprotein expressed at high levels on human vascular endothelial cells, shares regions of sequence identity with betaglycan, a major binding protein for transforming growth factor-beta (TGF-beta) that co-exists with TGF-beta receptors I and II in a variety of cell lines but is low or absent in endothelial cells. We have examined whether endoglin also binds TGF-beta and demonstrate here that the major TGF-beta 1-binding protein co-existing with TGF-beta receptors I and II on human umbilical vein endothelial cells is endoglin, as determined by specific immunoprecipitation of endoglin affinity-labeled with 125I-TGF-beta. Furthermore, endoglin ectopically expressed in COS cells binds TGF-beta 1. Competition affinity-labeling experiments showed that endoglin binds TGF-beta 1 (KD approximately 50 pM) and TGF-beta 3 with high affinity but fails to bind TGF-beta 2. This difference in affinity of endoglin for the TGF-beta isoforms is in contrast to beta-glycan which recognizes all three isoforms. TGF-beta however is binding with high affinity to only a small fraction of the available endoglin molecules, suggesting that some rate-limiting event is required to sustain TGF-beta binding to endoglin.  相似文献   

11.
12.
Transforming growth factor-beta (TGF-beta) is a secreted polypeptide factor that is thought to play a major role in the regulation of proliferation of many cell types and various differentiation processes. Several related isoforms have been structurally characterized, three of which, TGF-beta 1, -beta 2, and -beta 3, have been detected in mammalian cells and tissues. Each TGF-beta form is a homodimer of a 112-amino-acid polypeptide which is encoded as a larger polypeptide precursor. We have introduced several mutations in the TGF-beta 1 precursor domain, resulting in an inhibition of TGF-beta 1 secretion. Coexpression of these mutants with wild-type TGF-beta 1, -beta 2, and -beta 3 results in a competitive and specific inhibition of the secretion of different TFG-beta forms, indicating that these mutated versions act as dominant negative mutants for TGF-beta secretion. Overexpression of dominant negative mutants can thus be used to abolish endogenous secretion of TGF-beta and structurally related family members, both in vitro and in vivo, and to probe in this way the physiological functions of the members of the TGF-beta superfamily.  相似文献   

13.
Scatchard analyses of the binding of transforming growth factor-beta (TGF-beta) to a wide variety of different cell types in culture revealed the universal presence of high affinity (Kd = 1-60 pM) receptors for TGF-beta on every cell type assayed, indicating a wide potential target range for TGF-beta action. There was a strong (r = +0.85) inverse relationship between the receptor affinity and the number of receptors expressed per cell, such that at low TGF-beta concentrations, essentially all cells bound a similar number of TGF-beta molecules per cell. The binding of TGF-beta to various cell types was not altered by many agents that affect the cellular response to TGF-beta, suggesting that modulation of TGF-beta binding to its receptor may not be a primary control mechanism in TGF-beta action. Similarly, in vitro transformation resulted in only relatively small changes in the cellular binding of TGF-beta, and for those cell types that exhibited ligand-induced down-regulation of the receptor, down-regulation was not extensive. Thus the strong conservation of binding observed between cell types is also seen within a given cell type under a variety of conditions, and receptor expression appears to be essentially constitutive. Finally, the biologically inactive form of TGF-beta, which constitutes greater than 98% of autocrine TGF-beta secreted by all of the twelve different cell types assayed, was shown to be unable to bind to the receptor without prior activation in vitro. It is proposed that this may prevent premature interaction of autocrine ligand and receptor in the Golgi apparatus.  相似文献   

14.
Transforming growth factor-beta1 (TGF-beta1) has a biphasic effect on the growth of renal epithelial cells. In transformed cells, TGF-beta1 appears to accelerate the proliferation of malignant cells. The diverse cellular functions of TGF-beta1 are regulated by three high-affinity serine/threonine kinase receptors, namely TbetaRI, TbetaRII and TbetaRIII. The renal serine protease tissue kallikrein acts on its endogenous protein substrate kininogen to form kinin peptides. The cellular actions of kinins are mediated through B1 and B2 G protein-coupled rhodopsin receptors. Both kinin peptides and TGF-beta1 are mitogenic, and therefore may play an important role in carcinogenesis. Experiments were designed to immunolabel tissue kallikrein, TGF-beta1, TbetaRII, TbetaRIII and kinin receptors using specific antibodies on serial sections of normal kidney and clear-cell renal carcinoma (CCRC) tissue, which included both the tumour and the adjacent renal parenchyma. The essential result was the localisation of tissue kallikrein, kinin B 1 and B 2 receptors and TGF-beta1 primarily on the cell membranes of CCRC cells. In the distal and proximal tubules of the renal parenchyma adjacent to the carcinoma (RPTAC), immunolabelling for tissue kallikrein was reduced, but the expression of kinin B1 and B2 receptors was enhanced. Immunolabelling for TbetaRII and TbetaRIII was more pronounced in the proximal tubules of the tissue adjacent to the carcinoma when compared to the normal kidney. The expression of tissue kallikrein, kinin receptors, and TbetaRII and TbetaRIII may be relevant to the parenchymal invasion and metastasis of clear-cell renal carcinoma.  相似文献   

15.
16.
Transforming growth factor-beta (TGF-beta) is thought to play a role in the pathobiological progression of ovarian cancer because this peptide hormone is overexpressed in cancer tissue, plasma, and peritoneal fluid. In the current study, we investigated the role of the TGF-beta/Smad3 pathway in ovarian cancer metastasis by regulation of an epithelial-to-mesenchymal transition. When cancer cells were cultured on plastic, TGF-beta1, TGF-beta2, and TGF-beta3 induced pro-matrix metalloproteinase (MMP) secretion, loss of cell-cell junctions, down-regulation of E-cadherin, up-regulation of N-cadherin, and acquisition of a fibroblastoid phenotype, consistent with an epithelial-to-mesenchymal transition. Furthermore, Smad3 small interfering RNA transfection inhibited TGF-beta-mediated changes to a fibroblastic morphology, but not MMP secretion. When cancer cells were cultured on a three-dimensional collagen matrix, TGF-beta1, TGF-beta2, and TGF-beta3 stimulated both pro-MMP and active MMP secretion and invasion. Smad3 small interfering RNA transfection of cells cultured on a collagen matrix abrogated TGF-beta-stimulated invasion and MMP secretion. Analysis of Smad3 nuclear expression in microarrays of serous benign tumors, borderline tumors, and cystadenocarcinoma revealed that Smad3 expression could be used to distinguish benign and borderline tumors from carcinoma (P = 0.006). Higher Smad3 expression also correlated with poor survival (P = 0.031). Furthermore, a direct relationship exists between Smad3 nuclear expression and expression of the mesenchymal marker N-cadherin in cancer patients (P = 0.0057). Collectively, these results implicate an important role for the TGF-beta/Smad3 pathway in mediating ovarian oncogenesis by enhancing metastatic potential.  相似文献   

17.
18.
Insulin-like growth factor binding protein-3 (IGFBP-3) inhibits the replication and promotes apoptosis in various cell lines in an IGF-independent manner. We utilized a yeast two-hybrid system to identify binding partners for IGFBP-3 in a mouse embryo cDNA library. A partial cDNA encoding mouse latent transforming growth factor beta (TGF-) binding protein-1 (LTBP-1) was identified. This cDNA encoded a mouse LTBP-1 mRNA fragment corresponding to amino acid residues 1160–1712. Analysis of C-terminal deleted mutants indicated that the IGFBP-3 interacting domain resides in the 552 residue C-terminal fragment encoding amino acids 831–1383. The interaction of IGFBP-3 with recombinant human LTBP-1 immobilized on nitrocellulose was also demonstrated. Neither binding of IGF-I to IGFBP-3 nor binding of latency associated protein (LAP) with LTBP-1 inhibited the interaction of IGFBP-3 with LTBP-1. Furthermore the large latent complex, 125I-TGF-/LAP/LTBP-1 was able to bind to immobilized IGFBP-3. These data demonstrate that IGFBP-3 can bind to LTBP-1 and provide a potential mechanism whereby IGFBP-3 can interact with the TGF- system.  相似文献   

19.
20.
Betaglycan, also known as the transforming growth factor-beta (TGF-beta) type III receptor, is a membrane-anchored proteoglycan that binds TGF-beta via its core protein. Deletion mutagenesis analysis has revealed two regions of betaglycan ectodomain capable of binding TGF-beta: one at the amino-terminal half, the endoglin-related region (López-Casillas, F., Payne, H., Andres, J. L., and Massagué, J. (1994) J. Cell Biol. 124, 557-568), and the other at the carboxyl-terminal half, the uromodulin-related region (Pepin, M.-C., Beauchemin, M., Plamondon, J., and O'Connor-McCourt, M. D. (1994) Proc. Natl. Acad. Sci. U. S. A 91, 6997-7001). In the present work we have functionally characterized these ligand binding regions. Similar to the wild type receptor, both regions bind TGF-beta2 with higher affinity than TGF-beta1. However, only the endoglin-related region increases the TGF-beta2 labeling of the TGF-beta type II receptor, the so-called "TGF-beta -presentation" function of the wild type receptor. Despite this preference, both regions as well as the wild type receptor mediate the TGF-beta2-dependent Smad2 phosphorylation, indicating that they can function indistinguishably as TGF-beta-enhancing co-receptors. On the other hand, we found that the recently described ability of the wild type betaglycan to bind inhibin A is a property of the core protein that resides in the uromodulin-related region. Binding competition experiments indicate that this region binds inhibin and TGF-beta with the following relative affinities: TGF-beta2 > inhibin A > TGF-beta1. All together, the present results suggest that betaglycan ectodomain is endowed with two bona fide independent ligand binding domains that can perform specialized functions as co-receptors of distinct members of the TGF-beta superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号