首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis   总被引:8,自引:0,他引:8  
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. A key component of the Wnt signaling pathway is the cytosolic protein, beta-catenin. We have recently shown that the chondrogenic activity of BMP-2 in vitro involves the action of the cell-cell adhesion protein, N-cadherin, which functionally complexes with beta-catenin. The aim of this study is to test the hypothesis that Wnts may be involved in BMP-2 induced chondrogenesis, using an in vitro model of high-density micromass cultures of the murine multipotent mesenchymal cell line, C3H10T1/2. Expression of a number of Wnt members was detected in these cultures, including Wnt-3A and Wnt-7A, whose levels were up- and downregulated, respectively, by BMP-2. To assess the functional involvement of Wnt signaling in BMP-2 induced chondrogenesis, cultures were treated with lithium chloride, a Wnt-7A mimetic that acts by inhibiting the serine/threonine phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta). Lithium treatment significantly inhibited BMP-2 stimulation of chondrogenesis as well as GSK-3beta enzymatic activity, and decreased the levels of N-cadherin protein and mRNA. Furthermore, lithium decreased BMP-2 upregulation of total and nuclear levels of LEF-1 and beta-catenin as well as their interaction during later chondrogenesis; similarly, the interaction of beta-catenin with N-cadherin was also decreased. Interestingly, lithium treatment did not affect the ability of BMP-2 to decrease ubiquitination of beta-catenin, although it did reduce the interaction of beta-catenin with GSK-3beta during late chondrogenesis (days 9-13). We suggest that the chondro-inhibitory effect of lithium on BMP-2 induced chondrogenesis indicates antagonism between lithium-like Wnts and BMP-2 during mesenchymal condensation.  相似文献   

3.
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling.  相似文献   

4.
5.
One of the most important issues in stem cell research is to understand the regulatory mechanisms responsible for their differentiation. An extensive understanding of mechanism underlying the process of differentiation is crucial in order to prompt stem cells to perform a particular function after differentiation. To elucidate the molecular mechanisms responsible for the hematopoietic differentiation of embryonic stem cells (ESCs), we investigated murine ES cells for the presence of hematopoietic lineage markers as well as Wnt signaling pathway during treatments with different cytokines alone or in combination with another. Here we report that Wnt/beta-catenin signaling is down-regulated in hematopoietic differentiation of murine ES cells. We also found that differentiation induced by the interleukin-3, interleukin-6, and erythropoietin combinations resulted in high expression of CD3e, CD11b, CD45R/B220, Ly-6G, and TER-119 in differentiated ES cells. A high expression of beta-catenin was observed in two undifferentiated ES cell lines. Gene and protein expression analysis revealed that the members downstream of Wnt in this signaling pathway including beta-catenin, GSK-3beta, Axin, and TCF4 were significantly down-regulated as ES cells differentiated into hematopoietic progenitors. Our results show that the Wnt/beta-catenin signaling pathway plays a role in the hematopoietic differentiation of murine ESCs and also may support beta-catenin as a crucial factor in the maintenance of ES cells in their undifferentiated state.  相似文献   

6.
Previous studies of the developing lens have shown that Notch signaling regulates differentiation of lens fiber cells by maintaining a proliferating precursor pool in the anterior epithelium. However, whether Notch signaling is further required after the onset of fiber cell differentiation is not clear. This work investigates the role of Notch2 and Jagged1 (Jag1) in secondary fiber cell differentiation using rat lens epithelial explants undergoing FGF-2 dependent differentiation in vitro. FGF induced Jag1 expression and Notch2 signaling (as judged by the appearance of activated Notch2 Intracellular Domain (N2ICD)) within 12-24 h. These changes were correlated with induction of the Notch effector, Hes5, upregulation of N-cadherin (N-cad), and downregulation of E-cadherin (E-cad), a cadherin switch characteristic of fiber cell differentiation. Induction of Jag1 was efficiently blocked by U0126, a specific inhibitor of MAPK/ERK signaling, indicating a requirement for signaling through this pathway downstream of the FGF receptor. Other growth factors that activate MAPK/ERK signaling (EGF, PDGF, IGF) did not induce Jag1. Inhibition of Notch signaling using gamma secretase inhibitors DAPT and L-685,458 or anti-Jag1 antibody markedly decreased FGF-dependent expression of Jag1 demonstrating Notch-dependent lateral induction. In addition, inhibition of Notch signaling reduced expression of N-cad, and the cyclin dependent kinase inhibitor, p57Kip2, indicating a direct role for Notch signaling in secondary fiber cell differentiation. These results demonstrate that Notch-mediated lateral induction of Jag1 is an essential component of FGF-dependent lens fiber cell differentiation.  相似文献   

7.
8.
Wnt proteins are expressed during limb morphogenesis, yet their role and mechanism of action remains unclear during long bone growth. Wnt expression, effects and modulation of signaling events by BMP and transforming growth factor-beta (TGF-beta) were evaluated in chick embryonic chondrocytes. Chondrocyte cell cultures underwent spontaneous maturation with increased expression of colX and this was associated with an increase in the expression of multiple Wnts, including Wnt 4, 5a, 8c, and 9a. Both parathyroid hormone related peptide (PTHrP) and TGF-beta inhibited colX, but had disparate effects on Wnt expression. While TGF-beta strongly inhibited all Wnts, PTHrP did not inhibit either Wnt8c or Wnt9a and had lesser effects on the expression of the other Wnts. BMP-2 induced colX expression, and also markedly increased Wnt8c expression. Overexpression of beta-catenin and/or T cell factor (TCF)-4 also induced the type X collagen promoter. Overexpression of Wnt8c induced maturation, as did overexpression of beta-catenin. The Wnt8c/beta-catenin maturational effects were enhanced by BMP-2 and inhibited by TGF-beta. TGF-beta also inhibited activation of the Topflash reporter by beta-catenin, suggesting a direct inhibitory effect since the Topflash reporter contains only beta-catenin binding sequences. In turn beta-catenin inhibited activation of the p3TP-Luc reporter by TGF-beta, although the effect was partial. Thus, Wnt/beta-catenin signaling is a critical regulator of the rate of chondrocyte differentiation. Moreover, this pathway is modulated by members of the TGF-beta family and demonstrates the highly integrated nature of signals controlling endochondral ossification.  相似文献   

9.
10.
11.
12.
The Wnt/β-catenin signaling pathway controls many processes during development, including cell proliferation, cell differentiation and tissue homeostasis, and its aberrant regulation has been linked to various pathologies. In this study we investigated the effect of ectopic activation of Wnt/β-catenin signaling during lens fiber cell differentiation. To activate Wnt/β-catenin signaling in lens fiber cells, the transgenic mouse referred to as αA-CLEF was generated, in which the transactivation domain of β-catenin was fused to the DNA-binding protein LEF1, and expression of the transgene was controlled by αA-crystallin promoter. Constitutive activation of Wnt/β-catenin signaling in lens fiber cells of αA-CLEF mice resulted in abnormal and delayed fiber cell differentiation. Moreover, adult αA-CLEF mice developed cataract, microphthalmia and manifested downregulated levels of γ-crystallins in lenses. We provide evidence of aberrant expression of cell cycle regulators in embryonic lenses of αA-CLEF transgenic mice resulting in the delay in cell cycle exit and in the shift of fiber cell differentiation to the central fiber cell compartment. Our results indicate that precise regulation of the Wnt/β-catenin signaling activity during later stages of lens development is essential for proper lens fiber cell differentiation and lens transparency.  相似文献   

13.
beta-Catenin plays a key role in cadherin-mediated cell adhesion as well as in canonical Wnt signaling. To study the role of beta-catenin during eye development, we used conditional Cre/loxP system in mouse to inactivate beta-catenin in developing lens and retina. Inactivation of beta-catenin does not suppress lens fate, but instead results in abnormal morphogenesis of the lens. Using BAT-gal reporter mice, we show that beta-catenin-mediated Wnt signaling is notably absent from lens and neuroretina throughout eye development. The observed defect is therefore likely due to the cytoskeletal role of beta-catenin, and is accompanied by impaired epithelial cell adhesion. In contrast, inactivation of beta-catenin in the nasal ectoderm, an area with active Wnt signaling, results in formation of crystallin-positive ectopic lentoid bodies. These data suggest that, outside of the normal lens, beta-catenin functions as a coactivator of canonical Wnt signaling to suppress lens fate.  相似文献   

14.
Growth factor regulation of lens development   总被引:5,自引:0,他引:5  
Lens arises from ectoderm situated next to the optic vesicles. By thickening and invaginating, the ectoderm forms the lens vesicle. Growth factors are key regulators of cell fate and behavior. Current evidence indicates that FGFs and BMPs are required to induce lens differentiation from ectoderm. In the lens vesicle, posterior cells elongate to form the primary fibers whereas anterior cells differentiate into epithelial cells. The divergent fates of these embryonic cells give the lens its distinctive polarity. There is now compelling evidence that, at least in mammals, FGF is required to initiate fiber differentiation and that progression of this complex process depends on the synchronized and integrated action of a number of distinct growth factor-induced signaling pathways. It is also proposed that an antero-posterior gradient of FGF stimulation in the mammalian eye ensures that the lens attains and maintains its polarity and growth patterns. Less is known about differentiation of the lens epithelium; however, recent studies point to a role for Wnt signaling. Multiple Wnts and their receptors are expressed in the lens epithelium, and mice with impaired Wnt signaling have a deficient epithelium. Recent studies also indicate that other families of molecules, that can modulate growth factor signaling, have a role in regulating the ordered growth and differentiation of the lens.  相似文献   

15.
Secreted FGFR3, but not FGFR1, inhibits lens fiber differentiation   总被引:11,自引:0,他引:11  
The vertebrate lens has a distinct polarity with cuboidal epithelial cells on the anterior side and differentiated fiber cells on the posterior side. It has been proposed that the anterior-posterior polarity of the lens is imposed by factors present in the ocular media surrounding the lens (aqueous and vitreous humor). The differentiation factors have been hypothesized to be members of the fibroblast growth factor (FGF) family. Though FGFs have been shown to be sufficient for induction of lens differentiation both in vivo and in vitro, they have not been demonstrated to be necessary for endogenous initiation of fiber cell differentiation. To test this possibility, we have generated transgenic mice with ocular expression of secreted self-dimerizing versions of FGFR1 (FR1) and FGFR3 (FR3). Expression of FR3, but not FR1, leads to an expansion of proliferating epithelial cells from the anterior to the posterior side of the lens due to a delay in the initiation of fiber cell differentiation. This delay is most apparent postnatally and correlates with appropriate changes in expression of marker genes including p57(KIP2), Maf and Prox1. Phosphorylation of Erk1 and Erk2 was reduced in the lenses of FR3 mice compared with nontransgenic mice. Though differentiation was delayed in FR3 mice, the lens epithelial cells still retained their intrinsic ability to respond to FGF stimulation. Based on these results we propose that the initiation of lens fiber cell differentiation in mice requires FGF receptor signaling and that one of the lens differentiation signals in the vitreous humor is a ligand for FR3, and is therefore likely to be an FGF or FGF-like factor.  相似文献   

16.
Previous studies showed that the retina produces factors that promote the differentiation of lens fiber cells, and identified members of the fibroblast growth factor (FGF) and insulin-like growth factor (IGF) families as potential fiber cell differentiation factors. A possible role for the bone morphogenetic proteins (BMPs) is suggested by the presence of BMP receptors in chicken embryo lenses. We have now observed that phosphorylated SMAD1, an indicator of signaling through BMP receptors, localizes to the nuclei of elongating lens fiber cells. Transduction of chicken embryo retinas and/or lenses with constructs expressing noggin, a secreted protein that binds BMPs and prevents their interactions with their receptors, delayed lens fiber cell elongation and increased cell death in the lens epithelium. In an in vitro explant system, in which chicken embryo or adult bovine vitreous humor stimulates chicken embryo lens epithelial cells to elongate into fiber-like cells, these effects were inhibited by noggin-containing conditioned medium, or by recombinant noggin. BMP2, 4, or 7 were able to reverse the inhibition caused by noggin. Lens cell elongation in epithelial explants was stimulated by treatment with FGF1 or FGF2, alone or in combination with BMP2, but not to the same extent as vitreous humor. These data indicate that BMPs participate in the differentiation of lens fiber cells, along with at least one additional, and still unknown factor.  相似文献   

17.
18.
Members of the fibroblast growth factor (FGF) family induce lens epithelial cells to undergo cell division and differentiate into fibres; a low dose of FGF can stimulate cell proliferation (but not fibre differentiation), whereas higher doses of FGF are required to induce fibre differentiation. To determine if these cellular events are regulated by the same signalling pathways, we examined the role of mitogen-activated protein kinase (MAPK) signalling in FGF-induced lens cell proliferation and differentiation. We show that FGF induced a dose-dependent activation of extracellular regulated kinase 1/2 (ERK1/2) as early as 15 minutes in culture, with a high (differentiating) dose of FGF stimulating a greater level of ERK phosphorylation than a lower (proliferating) dose. Subsequent blocking experiments using UO126 (a specific inhibitor of ERK activation) showed that activation of ERK is required for FGF-induced lens cell proliferation and fibre differentiation. Interestingly, inhibition of ERK signalling can block the morphological changes associated with FGF-induced lens fibre differentiation; however, it cannot block the synthesis of some of the molecular differentiation markers, namely, beta-crystallin. These findings are consistent with the in vivo distribution of the phosphorylated (active) forms of ERK1/2 in the lens. Taken together, our data indicate that different levels of ERK signalling may be important for the regulation of lens cell proliferation and early morphological events associated with fibre differentiation; however, multiple signalling pathways are likely to be required for the process of lens fibre differentiation and maturation.  相似文献   

19.
Wnt signaling, via the activation of the canonical beta-catenin and lymphoid enhancer factor (LEF)/T-cell factor pathway, plays an important role in embryogenesis and cancer development by regulating the expression of genes involved in cell proliferation, differentiation, and survival. Dapper (Dpr), as a Dishevelled interactor, has been suggested to modulate Wnt signaling by promoting Dishevelled degradation. Here, we provide evidence that Dpr1 shuttles between the cytoplasm and the nucleus. Although overexpressed Dpr1 was mainly found in the cytoplasm, endogenous Dpr1 was localized over the cell, and Wnt1 induced its nuclear export. Treatment with leptomycin B induced nuclear accumulation of both endogenous and overexpressed Dpr1. We further identified the nuclear localization signal and the nuclear export signal within Dpr1. Using reporter assay and in vivo zebrafish embryo assay, we demonstrated that the forced nuclearly localized Dpr1 possessed the ability to antagonize Wnt signaling. Dpr1 interacted with beta-catenin and LEF1 and disrupted their complex formation. Furthermore, Dpr1 could associate with histone deacetylase 1 (HDAC1) and enhance the LEF1-HDAC1 interaction. Together, our findings suggest that Dpr1 negatively modulates the basal activity of Wnt/beta-catenin signaling in the nucleus by keeping LEF1 in the repressive state. Thus, Dpr1 controls Wnt/beta-catenin signaling in both the cytoplasm and the nucleus.  相似文献   

20.
Mechanical loading of bone initiates an anabolic, anticatabolic pattern of response, yet the molecular events involved in mechanical signal transduction are not well understood. Wnt/beta-catenin signaling has been recognized in promoting bone anabolism, and application of strain has been shown to induce beta-catenin activation. In this work, we have used a preosteoblastic cell line to study the effects of dynamic mechanical strain on beta-catenin signaling. We found that mechanical strain caused a rapid, transient accumulation of active beta-catenin in the cytoplasm and its translocation to the nucleus. This was followed by up-regulation of the Wnt/beta-catenin target genes Wisp1 and Cox2, with peak responses at 4 and 1 h of strain, respectively. The increase of beta-catenin was temporally related to the activation of Akt and subsequent inactivation of GSK3beta, and caveolin-1 was not required for these molecular events. Application of Dkk-1, which disrupts canonical Wnt/LRP5 signaling, did not block strain-induced nuclear translocation of beta-catenin or up-regulation of Wisp1 and Cox2 expression. Conditions that increased basal beta-catenin levels, such as lithium chloride treatment or repression of caveolin-1 expression, were shown to enhance the effects of strain. In summary, mechanical strain activates Akt and inactivates GSK3beta to allow beta-catenin translocation, and Wnt signaling through LRP5 is not required for these strain-mediated responses. Thus, beta-catenin serves as both a modulator and effector of mechanical signals in bone cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号