首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitotic checkpoint functions to ensure accurate chromosome segregation by regulating the progression from metaphase to anaphase. Once the checkpoint has been satisfied, it is inactivated in order to allow the cell to proceed into anaphase and complete the cell cycle. The minus end-directed microtubule motor dynein/dynactin has been implicated in the silencing of the mitotic checkpoint by "stripping" checkpoint proteins off kinetochores. A recent study suggested that Nordihydroguaiaretic acid (NDGA) stimulates dynein/dynactin-mediated transport of its cargo including ZW10 (Zeste White 10). We analyzed the effects of NDGA on dynein/dynactin dependent transport of the RZZ (Zeste White 10, Roughdeal, Zwilch) complex as well as other kinetochore components from kinetochores to spindle poles. Through this approach we have catalogued several kinetochore and centromere components as dynein/dynactin cargo. These include hZW10, hZwilch, hROD, hSpindly, hMad1, hMad2, hCENP-E, hCdc27, cyclin-B and hMps1. Furthermore, we found that treatment with NDGA induced a robust accumulation and complete stabilization of hZW10 at spindle poles. This finding suggests that NDGA may not induce dynein/dynactin transport but rather interfere with cargo release. Lastly, we determined that NDGA induced accumulation of checkpoint proteins at the poles requires dynein/dynactin-mediated transport, hZW10 kinetochore localization and kinetochore-microtubule attachments but not tension or Aurora B kinase activity.  相似文献   

2.
During mitotic spindle assembly, Aurora B kinase is part of an error correction mechanism that detaches microtubules from kinetochores that are under low mechanical tension. During anaphase, however, kinetochore-microtubule attachments must be maintained despite a drop of tension after removal of sister chromatid cohesion. Consistent with this requirement, Aurora B relocates away from chromosomes to the central spindle at the metaphase-anaphase transition. By ribonucleic acid interference screening using a phosphorylation biosensor, we identified two PP1-targeting subunits, Sds22 and Repo-Man, which counteracted Aurora B-dependent phosphorylation of the outer kinetochore component Dsn1 during anaphase. Sds22 or Repo-Man depletion induced transient pauses during poleward chromosome movement and a high incidence of chromosome missegregation. Thus, our study identifies PP1-targeting subunits that regulate the microtubule-kinetochore interface during anaphase for faithful chromosome segregation.  相似文献   

3.
For accurate segregation of chromosomes during cell division, microtubule fibres must attach sister kinetochores to opposite poles of the mitotic spindle (bi-orientation). Aurora kinases are linked to oncogenesis and have been implicated in the regulation of chromosome-microtubule attachments. Although loss of Aurora kinase activity causes an accumulation of mal-orientated chromosomes in dividing cells, it is not known how the active kinase corrects improper chromosome attachments. The use of reversible small-molecule inhibitors allows activation of protein function in living vertebrate cells with temporal control. Here we show that by removal of small-molecule inhibitors, controlled activation of Aurora kinase during mitosis can correct chromosome attachment errors by selective disassembly of kinetochore-microtubule fibres, rather than by alternative mechanisms involving initial release of microtubules from either kinetochores or spindle poles. Observation of chromosomes and microtubule dynamics with real-time high-resolution microscopy showed that mal-orientated, but not bi-orientated, chromosomes move to the spindle pole as both kinetochore-microtubule fibres shorten, followed by alignment at the metaphase plate. Our results provide direct evidence for a mechanism required for the maintenance of genome integrity during cell division.  相似文献   

4.
Polo-like kinase-1 (Plk1) is a highly conserved kinase with multiple mitotic functions. Plk1 localizes to prometaphase kinetochores and is reduced at metaphase kinetochores, similar to many checkpoint signaling proteins, but Plk1 is not required for spindle checkpoint function. Plk1 is also implicated in stabilizing kinetochore-microtubule attachments, but these attachments are most stable when kinetochore Plk1 levels are low at metaphase. Therefore, it is unclear how Plk1 function at kinetochores can be understood in the context of its dynamic localization. In this paper, we show that Plk1 activity suppresses kinetochore-microtubule dynamics to stabilize initial attachments in prometaphase, and Plk1 removal from kinetochores is necessary to maintain dynamic microtubules in metaphase. Constitutively targeting Plk1 to kinetochores maintained high activity at metaphase, leading to reduced interkinetochore tension and intrakinetochore stretch, a checkpoint-dependent mitotic arrest, and accumulation of microtubule attachment errors. Together, our data show that Plk1 dynamics at kinetochores control two critical mitotic processes: initially establishing correct kinetochore-microtubule attachments and subsequently silencing the spindle checkpoint.  相似文献   

5.
Successful mitosis requires that anaphase chromosomes sustain a commitment to move to their assigned spindle poles. This requires stable spindle attachment of anaphase kinetochores. Prior to anaphase, stable spindle attachment depends on tension created by opposing forces on sister kinetochores [1]. Because tension is lost when kinetochores disjoin, stable attachment in anaphase must have a different basis. After expression of nondegradable cyclin B (CYC-B(S)) in Drosophila embryos, sister chromosomes disjoined normally but their anaphase behavior was abnormal [2]. Chromosomes exhibited cycles of reorientation from one pole to the other. Additionally, the unpaired kinetochores accumulated attachments to both poles (merotelic attachments), congressed (again) to a pseudometaphase plate, and reacquired associations with checkpoint proteins more characteristic of prometaphase kinetochores. Unpaired prometaphase kinetochores, which occurred in a mutant entering mitosis with unreplicated (unpaired) chromosomes, behaved just like the anaphase kinetochores at the CYC-B(S) arrest. Finally, the normal anaphase release of AuroraB/INCENP from kinetochores was blocked by CYC-B(S) expression and, reciprocally, was advanced in a CycB mutant. Given its established role in destabilizing kinetochore-microtubule interactions [3], Aurora B dissociation is likely to be key to the change in kinetochore behavior. These findings show that, in addition to loss of sister chromosome cohesion, successful anaphase requires a kinetochore behavioral transition triggered by CYC-B destruction.  相似文献   

6.
Maintaining genome integrity during cell division requires regulated interactions between chromosomes and spindle microtubules. To ensure that daughter cells inherit the correct chromosomes, the sister kinetochores must attach to opposite spindle poles. Tension across the centromere stabilizes correct attachments, whereas phosphorylation of kinetochore substrates by the conserved Ipl1/Aurora B kinase selectively eliminates incorrect attachments. Here, we review our current understanding of how mechanical forces acting on the kinetochore are linked to biochemical changes to control chromosome segregation. We discuss models for tension sensing and regulation of kinetochore function downstream of Aurora B, and mechanisms that specify Aurora B localization to the inner centromere and determine its interactions with substrates at distinct locations.  相似文献   

7.
The spindle checkpoint ensures accurate chromosome segregation by delaying cell-cycle progression until all sister kinetochores capture microtubules from opposite poles and come under tension (for reviews, see refs 1, 2). Although the checkpoint is activated by either the lack of kinetochore-microtubule attachments or defects in the tension exerted by microtubule-generated forces, it is not clear whether these signals are linked. We investigated the connection between tension and attachment by studying the conserved budding yeast Ipl1Aurora protein kinase that is required for checkpoint activation in the absence of tension but not attachment. Here, we show that spindle-checkpoint activation in kinetochore mutants that seem to have unattached kinetochores depends on Ipl1 activity. When Ipl1 function was impaired in these kinetochore mutants, the attachments were restored and the checkpoint was turned off. These data indicate that Ipl1 activates the checkpoint in response to tension defects by creating unattached kinetochores. Moreover, although the Dam1 kinetochore complex has been implicated as a key downstream target, we found the existence of unidentified Ipl1 sites on Dam1 or additional important substrates that regulate both microtuble detachment and the checkpoint.  相似文献   

8.
Emanuele MJ  Stukenberg PT 《Cell》2007,130(5):893-905
For chromosomes to congress and segregate during cell division, kinetochores must form stable attachments with spindle microtubules. We find that the centrosome protein, xCep57, localizes to kinetochores and interacts with the kinetochore proteins Zwint, Mis12, and CLIP-170. Immunodepletion of xCep57 from egg extracts yields weakened and elongated bipolar spindles which fail to align chromosomes. In the absence of xCep57, tension is lost between sister kinetochores, and spindle microtubules are no longer resistant to low doses of nocodazole. xCep57 inhibition on isolated mitotic chromosomes inhibits kinetochore-microtubule binding in vitro. xCep57 also interacts with gamma-tubulin. In xCep57 immunodepleted extracts, sperm centrosomes nucleate with normal kinetics, but are unable maintain microtubule anchorage. This characterization places xCep57 in a novel class of proteins required for stable microtubule attachments at the kinetochore and at the centrosome and suggests that the mechanism of microtubule binding at these two places is mechanistically similar.  相似文献   

9.
Error-free chromosome segregation depends on the precise regulation of phosphorylation to stabilize kinetochore-microtubule attachments (K-fibres) on sister chromatids that have attached to opposite spindle poles (bi-oriented). In many instances, phosphorylation correlates with K-fibre destabilization. Consistent with this, multiple kinases, including Aurora B and Plk1, are enriched at kinetochores of mal-oriented chromosomes when compared with bi-oriented chromosomes, which have stable attachments. Paradoxically, however, these kinases also target to prometaphase chromosomes that have not yet established spindle attachments and it is therefore unclear how kinetochore-microtubule interactions can be stabilized when kinase levels are high. Here we show that the generation of stable K-fibres depends on the B56-PP2A phosphatase, which is enriched at centromeres/kinetochores of unattached chromosomes. When B56-PP2A is depleted, K-fibres are destabilized and chromosomes fail to align at the spindle equator. Strikingly, B56-PP2A depletion increases the level of phosphorylation of Aurora B and Plk1 kinetochore substrates as well as Plk1 recruitment to kinetochores. Consistent with increased substrate phosphorylation, we find that chemical inhibition of Aurora or Plk1 restores K-fibres in B56-PP2A-depleted cells. Our findings reveal that PP2A, an essential tumour suppressor, tunes the balance of phosphorylation to promote chromosome-spindle interactions during cell division.  相似文献   

10.
The Zeste-White 10 (ZW10) and Rough Deal (ROD) proteins are part of a complex necessary for accurate chromosome segregation. This complex recruits cytoplasmic dynein to the kinetochore and participates in the spindle checkpoint. We used immunoaffinity chromatography and mass spectroscopy to identify the Drosophila proteins in this complex. We found that the complex contains an additional protein we name Zwilch. Zwilch localizes to kinetochores and kinetochore microtubules in a manner identical to ZW10 and ROD. We have also isolated a zwilch mutant, which exhibits the same mitotic phenotypes associated with zw10 and rod mutations: lagging chromosomes at anaphase and precocious sister chromatid separation upon activation of the spindle checkpoint. Zwilch's role within the context of this complex is evolutionarily conserved. The human Zwilch protein (hZwilch) coimmunoprecipitates with hZW10 and hROD from HeLa cell extracts and localizes to the kinetochores at prometaphase. Finally, we discuss immunoaffinity chromatography results that suggest the existence of a weak interaction between the ZW10/ROD/Zwilch complex and the kinesin-like kinetochore component CENP-meta.  相似文献   

11.
BACKGROUND: Sister kinetochores must bind microtubules in a bipolar fashion to equally segregate chromosomes during mitosis. The molecular mechanisms underlying this process remain unclear. Aurora B likely promotes chromosome biorientation by regulating kinetochore-microtubule attachments. MCAK (mitotic centromere-associated kinesin) is a Kin I kinesin that can depolymerize microtubules. These two proteins both localize to mitotic centromeres and have overlapping mitotic functions, including regulation of microtubule dynamics, proper chromosome congression, and correction of improper kinetochore-microtubule attachments. RESULTS: We show that Aurora B phosphorylates and regulates MCAK both in vitro and in vivo. Specifically, we mapped six Aurora B phosphorylation sites on MCAK in both the centromere-targeting domain and the neck region. Aurora B activity was required to localize MCAK to centromeres, but not to spindle poles. Aurora B phosphorylation of serine 196 in the neck region of MCAK inhibited its microtubule depolymerization activity. We found that this key site was phosphorylated at centromeres and anaphase spindle midzones in vivo. However, within the inner centromere there were pockets of both phosphorylated and unphosphorylated MCAK protein, suggesting that phosphate turnover is crucial in the regulation of MCAK activity. Addition of alpha-p-S196 antibodies to Xenopus egg extracts or injection of alpha-p-S196 antibodies into cells caused defects in chromosome positioning and/or segregation. CONCLUSIONS: We have established a direct link between the microtubule depolymerase MCAK and Aurora B kinase. Our data suggest that Aurora B both positively and negatively regulates MCAK during mitosis. We propose that Aurora B biorients chromosomes by directing MCAK to depolymerize incorrectly oriented kinetochore microtubules.  相似文献   

12.
Maintenance of genome stability during cell division depends on establishing correct attachments between chromosomes and spindle microtubules. Correct, bioriented attachments are stabilized, whereas incorrect attachments are selectively destabilized. This process relies largely on increased phosphorylation of kinetochore substrates of Aurora B kinase at misaligned versus aligned kinetochores. Current models explain this differential phosphorylation by spatial changes in the position of substrates relative to?a constant pool of kinase at the inner centromere. However, these models are based on studies in aneuploid cells. We show that normal diploid cells have a more robust error-correction machinery. Aurora B is enriched at misaligned centromeres in these cells, and the dynamic range of Aurora B substrate phosphorylation at misaligned versus aligned kinetochores is increased. These findings indicate that in addition to Aurora B regulating kinetochore-microtubule binding, the kinetochore also controls Aurora B recruitment to the inner centromere. We show that this recruitment depends on both activity of Plk1, a kinetochore-localized kinase, and activity of Aurora B itself. Our results suggest a feedback mechanism in which Aurora B both regulates and is regulated by chromosome attachment to the spindle, which amplifies the differential phosphorylation of kinetochore substrates and increases the efficiency of error correction.  相似文献   

13.
We have studied Sds22, a conserved regulator of protein phosphatase 1 (PP1) activity, and determined its role in modulating the activity of aurora B kinase and kinetochore-microtubule interactions. Sds22 is required for proper progression through mitosis and localization of PP1 to mitotic kinetochores. Depletion of Sds22 increases aurora B T-loop phosphorylation and the rate of recovery from monastrol arrest. Phospho-aurora B accumulates at kinetochores in Sds22-depleted cells juxtaposed to critical kinetochore substrates. Sds22 modulates sister kinetochore distance and the interaction between Hec1 and the microtubule lattice and, thus, the activation of the spindle assembly checkpoint. These results demonstrate that Sds22 specifically defines PP1 function and localization in mitosis. Sds22 regulates PP1 targeting to the kinetochore, accumulation of phospho-aurora B, and force generation at the kinetochore-microtubule interface.  相似文献   

14.
Merotelic kinetochore orientation is a kinetochore-microtubule mis-attachment in which a single kinetochore binds microtubules to both spindle poles, rather than just one. Merotelic attachments occur frequently in early mitosis and can induce anaphase lagging chromosomes and aneuploidy if not corrected before anaphase onset. Merotelic kinetochore orientation does not interfere with chromosome alignment at the metaphase plate and does not activate the mitotic spindle checkpoint. However, a correction mechanism for merotelic attachment reduces the number of merotelic kinetochores entering anaphase, thus preventing chromosome mis-segregation. Result from many different studies support the idea that Aurora B kinase plays a critical role in this merotelic correction mechanism by phosphorylating key substrates at the kinetochore and promoting turnover of kinetochore microtubules. In addition, recent studies are starting to identify the possible ‘sensors’ of the system that would be able to detect the mis-attachment and communicate this to Aurora B. Here, I review these studies and discuss a model for how merotelic kinetochore orientation could be detected and corrected before anaphase onset.  相似文献   

15.
Loss or gain of whole chromosomes, the form of chromosomal instability (CIN) most commonly associated with human cancers, is expected to arise from the failure to accurately segregate chromosomes in mitosis. The mitotic checkpoint is one pathway that prevents segregation errors by blocking the onset of anaphase until all chromosomes make proper attachments to the spindle. Another process that prevents errors is stabilization and destabilization of connections between chromosomes and spindle microtubules. An outstanding question is how these two pathways are coordinated to ensure accurate chromosome segregation. Here we show that in human cells depleted of BubR1 - a critical component of the mitotic checkpoint that can directly regulate the onset of anaphase - chromosomes do not form stable attachments to spindle microtubules. Attachments in these cells are restored by inhibition of Aurora kinase, which is known to stabilize kinetochore-microtubule attachments. Loss of BubR1 function thus perturbs regulation of attachments rather than the ability of kinetochores to bind to microtubules. Consistent with this finding, depletion of BubR1 increases phosphorylation of CENP-A, a kinetochore-specific Aurora kinase substrate. We propose that BubR1 links regulation of chromosome-spindle attachment to mitotic checkpoint signalling.  相似文献   

16.
The mitotic checkpoint is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. Mitotic checkpoint function depends on numerous kinetochore proteins, including ZW10, ROD, and Zwilch (the ROD-ZW10-Zwilch complex). Through an extensive mutagenesis screen of hZW10, we have mapped the kinetochore localization domain of hZW10 as well as the hZwint-1 interaction domain. We find that hZwint-1-noninteracting mutants still localize to kinetochores. In addition, using fluorescence recovery after photobleaching, we have found that hZW10 residency at metaphase kinetochores is brief (half-time of 13 s). However, during prometaphase or at unattached kinetochores, enhanced green fluorescent protein-hZW10 becomes a stable component of the kinetochore. Moreover, we find that stable hZW10 kinetochore residency at prometaphase kinetochores is dependent on its interaction with hZwint-1, and is essential for mitotic checkpoint arrest.  相似文献   

17.
How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.  相似文献   

18.
We have combined the proteomic analysis of Xenopus laevis in vitro-assembled chromosomes with RNA interference and live cell imaging in HeLa cells to identify novel factors required for proper chromosome segregation. The first of these is Bod1, a protein conserved throughout metazoans that associates with a large macromolecular complex and localizes with kinetochores and spindle poles during mitosis. Small interfering RNA depletion of Bod1 in HeLa cells produces elongated mitotic spindles with severe biorientation defects. Bod1-depleted cells form syntelic attachments that can oscillate and generate enough force to separate sister kinetochores, suggesting that microtubule-kinetochore interactions were intact. Releasing Bod1-depleted cells from a monastrol block increases the frequency of syntelic attachments and the number of cells displaying biorientation defects. Bod1 depletion does not affect the activity or localization of Aurora B but does cause mislocalization of the microtubule depolymerase mitotic centromere- associated kinesin and prevents its efficient phosphorylation by Aurora B. Therefore, Bod1 is a novel kinetochore protein that is required for the detection or resolution of syntelic attachments in mitotic spindles.  相似文献   

19.
Through a functional genomic screen for mitotic regulators, we identified hepatoma up-regulated protein (HURP) as a protein that is required for chromosome congression and alignment. In HURP-depleted cells, the persistence of unaligned chromosomes and the reduction of tension across sister kinetochores on aligned chromosomes resulted in the activation of the spindle checkpoint. Although these defects transiently delayed mitotic progression, HeLa cells initiated anaphase without resolution of these deficiencies. This bypass of the checkpoint arrest provides a tumor-specific mechanism for chromosome missegregation and genomic instability. Mechanistically, HURP colocalized with the mitotic spindle in a concentration gradient increasing toward the chromosomes. HURP binds directly to microtubules in vitro and enhances their polymerization. In vivo, HURP stabilizes mitotic microtubules, promotes microtubule polymerization and bipolar spindle formation, and decreases the turnover rate of the mitotic spindle. Thus, HURP controls spindle stability and dynamics to achieve efficient kinetochore capture at prometaphase, timely chromosome congression to the metaphase plate, and proper interkinetochore tension for anaphase initiation.  相似文献   

20.
The coordinated activities at centromeres of two key cell cycle kinases, Polo and Aurora B, are critical for ensuring that the two sister kinetochores of each chromosome are attached to microtubules from opposite spindle poles prior to chromosome segregation at anaphase. Initial attachments of chromosomes to the spindle involve random interactions between kinetochores and dynamic microtubules, and errors occur frequently during early stages of the process. The balance between microtubule binding and error correction (e.g., release of bound microtubules) requires the activities of Polo and Aurora B kinases, with Polo promoting stable attachments and Aurora B promoting detachment. Our study concerns the coordination of the activities of these two kinases in vivo. We show that INCENP, a key scaffolding subunit of the chromosomal passenger complex (CPC), which consists of Aurora B kinase, INCENP, Survivin, and Borealin/Dasra B, also interacts with Polo kinase in Drosophila cells. It was known that Aurora A/Bora activates Polo at centrosomes during late G2. However, the kinase that activates Polo on chromosomes for its critical functions at kinetochores was not known. We show here that Aurora B kinase phosphorylates Polo on its activation loop at the centromere in early mitosis. This phosphorylation requires both INCENP and Aurora B activity (but not Aurora A activity) and is critical for Polo function at kinetochores. Our results demonstrate clearly that Polo kinase is regulated differently at centrosomes and centromeres and suggest that INCENP acts as a platform for kinase crosstalk at the centromere. This crosstalk may enable Polo and Aurora B to achieve a balance wherein microtubule mis-attachments are corrected, but proper attachments are stabilized allowing proper chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号