首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究自然植被恢复过程中的物种组成、群落结构及生物多样性的变化,能够为人工促进植被恢复的树种选择与群落结构的优化配置提供重要依据。本研究以空间代替时间对喀斯特断陷盆地典型区云南省建水县不同天然植被(草丛、灌丛、乔木林)进行群落学调查,对不同恢复阶段的植物群落按乔木、灌木、草本进行分层,分析各恢复阶段植物群落的物种组成、水平和垂直结构、生物多样性。结果表明:在总面积为3200 m2的12个样地中,共记录43科72属94种维管束植物,优势种以壳斗科(Fagaceae)、鼠李科(Rhamnaceae)、紫金牛科(Myrsinaceae)、蔷薇科(Rosaceae)、木犀科(Oleaceae)等科的植物为主;在草丛→灌丛→乔木林的恢复过程中,群落物种组成中的科数、属数、种数逐渐增加,低矮和小径级植物个体数所占比例逐渐减少,但整体仍以低矮的小径级植物为主。草本植物的丰富度和Shannon指数在植被恢复的初期即草丛阶段最大,而均匀度指数则以灌丛阶段最大;木本植物的丰富度和Shannon指数随着植被的恢复逐渐增大,但均匀度指数随着植被的恢复逐渐下降;随着植被的恢复,草本层和乔木层...  相似文献   

2.
Soil disturbance is recognized as an important driver of biodiversity in dry grasslands, and can therefore be implemented as a restoration measure. However, because community re-assembly following disturbance includes stochastic processes, a focus only on species richness or establishment success of particular species will not inform on how plant communities respond ecologically to disturbance. We therefore evaluated vegetation development following disturbance by quantifying species richness, species composition and functional trait composition. Degraded calcareous sandy grassland was subjected to experimental disturbance treatments (ploughing or rotavation), and the vegetation was surveyed during four subsequent years of succession. Treated plots were compared with control plots representing untreated grassland, as well as nearby plots characterized by plant communities representing the restoration target.Species richness and functional diversity both increased in response to soil disturbance, and rotavation, but not ploughing, had a persistent positive effect on the occurrence of specialist species of calcareous sandy grassland. However, no type of soil disturbance caused the plant species composition to develop towards the target vegetation. The disturbance had an immediate and large impact on the vegetation, but the vegetation developed rapidly back towards the control sites. Plant functional composition analysis indicated that the treatments created habitats different both from control sites and target sites. Community-weighted mean Ellenberg indicator values suggested that the observed plant community response was at least partially due to an increase in nitrogen and water availability following disturbance. This study shows that a mild type of disturbance, such as rotavation, may be most successful in promoting specialist species in calcareous sandy grassland, but that further treatments are needed to reduce nutrient availability. We conclude that a functional trait based analysis provides additional information of the vegetation response and the abiotic conditions created, complementing the information from the species composition.  相似文献   

3.
The classification of plant species according to the CSR ecological strategy scheme has been proposed as a common language that allows comparison among species, communities, and floras. Although several studies on European continent have demonstrated a consistent association between CSR strategies and key ecosystem processes, studies of this type are still lacking in other ecoregions worldwide. For the first time, the CSR strategy scheme is applied in a tropical plant community. In a Brazilian mountain grassland ecosystem characterized by both high biodiversity and environmental stress, we sampled various functional traits of 48 herbaceous species in stony and sandy grasslands, and evaluated the relationship between CSR strategies and functional traits with several environmental parameters. The extremely infertile soils in the two studied habitats may have acted as a major environmental filter leading to a clear predominance of the stress-tolerant strategy in both communities. However, fine-scale environmental differences between the two communities resulted in the filtering of distinct functional trait values. The sites with coarser soil texture, lower percentage of plant cover and (paradoxically) higher mineral nutrient concentrations favored plants with narrower leaves, higher stress tolerance, lower competitiveness, and higher sclerophylly (i.e., lower specific leaf area and higher leaf dry matter content). The comparison between the functional character of stony and sandy communities evidenced the influence of soil texture and water availability in the environmental filtering. This study highlighted the validity of the CSR classification outside the temperate region where it was originally developed and corroborated.  相似文献   

4.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

5.
Vegetation effects on arthropods are well recognized, but it is unclear how different vegetation attributes might influence arthropod assemblages across mixed-agricultural landscapes. Understanding how plant communities influence arthropods under different habitat and seasonal contexts can identify vegetation management options for arthropod biodiversity. We examined relationships between vegetation structure, plant species richness and plant species composition, and the diversity and composition of beetles in different habitats and time periods. We asked: (1) What is the relative importance of plant species richness, vegetation structure and plant composition in explaining beetle species richness, activity-density and composition? (2) How do plant-beetle relationships vary between different habitats over time? We sampled beetles using pitfall traps and surveyed vegetation in three habitats (woodland, farmland, their edges) during peak crop growth in spring and post-harvest in summer. Plant composition better predicted beetle composition than vegetation structure. Both plant richness and vegetation structure significantly and positively affected beetle activity-density. The influence of all vegetation attributes often varied in strength and direction between habitats and seasons for all trophic groups. The variable nature of plant-beetle relationships suggests that vegetation management could be targeted at specific habitats and time periods to maximize positive outcomes for beetle diversity. In particular, management that promotes plant richness at edges, and promotes herbaceous cover during summer, can support beetle diversity. Conserving ground cover in all habitats may improve activity-density of all beetle trophic groups. The impacts of existing weed control strategies in Australian crop margins on arthropod biodiversity require further study.  相似文献   

6.
Agricultural development has contributed to the global erosion of biodiversity. The farmed matrix in agricultural landscapes can and must be important for the conservation of biodiversity and provision of ecosystem services, but this assumes that the matrix has biodiversity value. We investigate the contribution of pastures and crops to ant diversity on mixed farms in eastern Australia. Remnant native woodlands, pastures of native grasses, sown pastures of exotic species, and crops were sampled for epigaeic ants on 3 farms using pitfall trapping. Ants were sorted to species and assigned to functional groups. Ant species richness and functionality followed consistent patterns across the three farms. Significant differences in assemblage composition were found between the major habitat types, and in species richness between woodland and non-woodland habitats (native and sown pastures, and crops), which did not contribute appreciably to farm-level biodiversity: 1–10% of species were found only in the farmed matrix. Insect conservation in agricultural landscapes is important for the provision of ecosystem services, including pest control and the maintenance of soil condition. As the farmed matrix makes only a modest contribution to farm-scale biodiversity, appropriate management of the unfarmed parts of the landscape is critical and habitat restoration may be warranted where the level of native vegetation is low. Maintaining a mix of land uses within the production matrix will also be a necessary bet-hedging strategy in a world with changing climates, commodities, community expectations and farming practices.  相似文献   

7.
Excess soil phosphorus often constrains ecological restoration of degraded semi-natural grasslands in Western-Europe. Slow-growing species, often target of restoration (measures), are at a disadvantage because they are outcompeted by fast-growing species. Gaining insight into the responses of plant species and communities to soil phosphorus availability will help understanding restoration trajectories of grassland ecosystems. We set up two pot experiments using twenty grassland species with contrasting growth forms (i.e. grasses versus forbs) and nutrient use strategies (i.e. acquisitive versus conservative nutrient use). We quantified the nutrient use strategy of a species based on the stress-tolerance value of the CSR framework (StrateFy et al. 2017). We grew these species (1) as monocultures and (2) in mixtures along a soil phosphorus gradient and measured the aboveground biomass and plant phosphorus concentrations. Plant phosphorus concentration generally increased with soil phosphorus supply and biomass increased with soil phosphorus supply only in conservative communities. Forbs had higher plant phosphorus concentrations compared to grasses both in monocultures and mixtures. The species’ nutrient use strategy had contrasting effects on plant tissue phosphorus concentrations, depending on soil phosphorus supply (interaction effect) and vegetation biomass (dilution effect). Our findings contribute to the knowledge required for successful ecological restoration of species-rich grasslands. Our results suggest that under specific conditions (i.e. nitrogen limitation, no dispersal limitation, no light limitation), slow-growing species can survive and even thrive under excess soil phosphorus availability. In the field, competition by fast-growing species may be reduced by increased mowing or grazing management.  相似文献   

8.
We examined if naturally recruited herbaceous vegetation in abandoned Belgian limestone quarries tend towards plant communities analogous to semi-natural habitats of conservation interest. We studied taxon-based assemblages (using two-dimensional non-metric multidimensional scaling ordination) and functional patterns (relative to Grime’s competitor, stress tolerator and ruderal plant strategies (CSR) classification) of plant communities (n = 360 plots) among three different time periods after quarry abandonment (< 3 y, 3–20 y, >?20 y). We compared those successional assemblages with those of habitat of conservation interest plant communities (n = 53 plots): lowland hay meadows and rupicolous, xerophilous and mesophilous calcareous grasslands. Our results indicate that naturally recruited herbaceous vegetation compositionally resembled mesophilous grassland, even though initial substrate conditions were more similar to rupicolous or xerophilous grasslands. The specific successional pathway we found in CSR state-space differs from Grime's predictions because there was a functional shift in plant assemblages from dominance by ruderals to dominance by stress-tolerant species. The differences in successional trajectories we found on different types of rock substrate suggest that conservation management should adopt a site-specific approach, recognizing that the highest probabilities of success on hard limestone will be restoration to calcareous grassland analogues.  相似文献   

9.
Restoring native habitats in heavily cleared and fragmented areas such as agricultural landscapes is important to maintain and increase remaining native floral and faunal communities. Identifying priority vegetation types for restoration – as well as the parcels of land where this restoration could take place at a landscape scale – may assist in strategically protecting these biodiversity assets. To prioritise the restoration of terrestrial habitats around an ecologically and culturally significant Ramsar‐listed wetland in South Australia, we used the spatial prioritisation tool Marxan. Originally designed for prioritising the protection of reserve areas, Marxan can also be used to identify parcels of land for restoration purposes. We tested how Marxan prioritised the restoration of four distinct vegetation types around the Coorong and Lower Lakes region of South Australia using the inverse of habitat remnancy as a cost and soil type and distance to ecologically significant bird species as a conservation feature. By prioritising restoration activities around certain landscape features, such as remnant areas, our results indicate that we would be able to strategically restore parcels of native habitat that would maximise biodiversity outcomes. This study highlights the need for robust input data, such as priority vegetation types and bird species associated with these habitats, to ensure informative modelling outputs. It also suggests that other measures, such as the cost of different land types, should be included in future restoration planning. Finally, we illustrate how prioritisation tools such as Marxan can be used by natural resource managers to restore areas within fragmented agricultural landscapes.  相似文献   

10.
In the southeastern United States, private forestland managers are under increased pressure to provide wildlife habitat and biodiversity in addition to commercial products such as timber. This study used a stand classification scheme based on vegetation biodiversity from Hedman et al. to compare seed bank composition of benchmark (BM) and nonbenchmark (NBM) Loblolly pine ( Pinus taeda ) stands. In the Hedman et al. study, BM stands contained species associated with Longleaf pine ( P. palustris )/Wiregrass ( Aristida stricta ) communities, whereas NBM stands contained species associated with disturbed sites. The current vegetation of the BM and NBM stands had an average cover of 7.9%/m2 and an average richness of 11 species/m2. The intent for this study was to assist in understanding the potential role of the seed bank during stand development and restoration. We collected seed bank samples from six pine plantations in the winter of 2006. Seed bank samples yielded 2,885 germinants representing 56 unique species but only 4 were found in both current herbaceous vegetation plots and seed bank. The seed bank was dominated by native dicots. In BM stands, 76% of species were native, whereas in NBM stands, 69% were native. Seed bank samples from NBM stands had greater species richness ( p = 0.03) and total germinants ( p = 0.03) than BM stands. Although the seed bank in all stands was dominated by native species, our data suggest that the seed bank under P. taeda stands should not be viewed as the sole source of native species for most restoration goals.  相似文献   

11.
Extensive degraded short tussock grasslands of New Zealand's eastern South Island were dominated by woody vegetation prior to burning and livestock grazing associated with human settlement starting 800 years ago. There is increasing interest in restoring some of these grasslands back to a woody state. However, because of the long time frames involved in establishing a woody cover, it is difficult to predict the impacts that woody restoration will have on the extant herbaceous flora. Using a factorial trial with artificial shade and grazing exclusion, we assessed the potential impact of woody restoration on the structure and composition of the herbaceous flora over a six‐year period. The imposition of artificial shade resulted in significant increases in total species richness and the total cover of herbaceous vegetation, increases in cover of several individual forb and grass species and decreases in the cover of bare ground, moss and lichen in shade treatments. There were also changes in the overall community composition of shaded treatments reflecting these changes in vegetation cover and species richness. We found no statistically significant effects of grazing exclusion. We suggest that increased soil moisture resulting from shade addition plays an important role in increasing the herbaceous component of the flora. While woody restoration will have a range of effects on the herbaceous understorey, for example through competition and changes in soil conditions, our findings are important for planning future woody restoration in these degraded tussock grasslands. In particular, our results suggest that the best approach to ensure the persistence of herbaceous vegetation in woody restorations might be to ensure that restoration plantings result in a spatially heterogeneous vegetation arrangement.  相似文献   

12.
Most countries sharing the Amazon basin have signed the Ramsar Convention on Wetlands of International Importance but still lack complete wetland inventories, classification systems, and management plans. Amazonian wetlands vary considerably with respect to hydrology, water and soil fertility, vegetation cover, diversity in plant and animal species and primary and secondary productivity. Here, we propose a classification system of major natural habitats of Amazonian white-water river floodplains (várzeas) based on hydrological, water and soil chemistry and biological parameters. The Amazonian várzea is one of the largest Amazonian wetlands. It is exceptionally rich in plant and animal species and plays important roles in landscape history, evolution, hydrology and biogeochemical cycles of the Amazon basin. Most of Amazonia??s rural population lives in or along the várzea, emphasizing the economic importance of its natural resources. Our classification indicates five major systems, which are subdivided into 10 main habitats and up to 40 functional (vegetation) units of which the most important mesohabitats are described. We understand this classification as a dynamic system, as it is open to the inclusion of future research attempts and habitats without affecting the entire classification system. Our classification may be used for scientific purposes, such as comparative studies on biomass, productivity, biogeochemical cycles and biodiversity. Also, because the classification builds on habitat types and/or vegetation and functional units already distinguished by the local population it may be especially useful in guiding intelligent use of várzea habitat for specific management activities, such as agriculture, animal husbandry, forestry, fisheries, and conservation.  相似文献   

13.
The establishment of environmental management zones is an important strategy for biodiversity conservation. However, identifying and assigning appropriate zones is a challenging task that is critical to the management’s success. The Environmentally Critical Areas Network (ECAN) of the Palawan province is among the management strategies being implemented in the western Philippines. Under this strategy, natural resources needing the highest degree of protection are designated as core zones (CZ). Our study revisited this strategy to assess the current placement of the core zones with respect to species distributions and vegetation types. We conducted a series of field surveys in four municipalities of Palawan to assess the status of biodiversity. Gathered data was used to identify potential critical habitats by generating species distribution models and performing vegetation analysis using land satellite images. The placement of the CZ was evaluated using the identified critical habitats. Our assessments show that many Palawan endemic species persist despite increasing pressures from anthropogenic activities. We also found that a considerable extent of natural forest remains, generally confined in high elevations and steep terrains. The assessment of critical habitats and CZ revealed vital gaps in protection, suggesting that a revision is necessary to accommodate important habitats of threatened and endemic species. Overall, our study highlights the significance of integrating biodiversity data in improving conservation and management strategies, which has been overlooked in the current ECAN zones.  相似文献   

14.
Land-use change is well documented to cause species loss. However, our understanding of the effects of land-use change on other aspects of biodiversity is still limited. We evaluated if different land-use changes (Eucalyptus plantation and planted pasture) affect ant species and functional groups in similar ways across three Cerrado vegetation types (grassland, savanna and savanna-forest). We found that ant species and functional responses differed with land-use change in relation to frequency of occurrence and habitat specificity and fidelity. Land-use change affected species frequency of occurrence but not functional groups, indicating that species are more sensitive than functional groups to habitat transformation. Native habitats had different indicator species and functional groups compared with converted habitats. However, we did not find functional group indicators of converted habitats in any vegetation type; indicating that there is no specificity and fidelity of functional group to converted habitats and that such an approach is less sensitive to land-use changes. In savanna and savanna-forest, species and functional groups showed the same response in relation to composition with differences between native and converted habitats. Thus, functional groups will be lost when ant species are lost. In grasslands, functional group composition was similar between native and converted habitats indicating a turnover of species within functional groups. We demonstrate that both Eucalyptus plantation and planted pasture affect ant species and functional groups in different ways, with negative impacts both taxonomically and less so functionally. Therefore, we show that the two aspects of biodiversity can respond independently to land-use changes and, hence, the importance of using both taxonomic and functional group approaches to evaluate the effects of land-use change on biodiversity in savanna systems.  相似文献   

15.
Freshwater ascomycetes are important decomposers of dead woody and herbaceous debris in aquatic habitats. Despite evidence of their ecological importance, latitudinal, habitat and substrate distributional patterns of freshwater ascomycetes are poorly understood. In this study, we examined the latitudinal and habitat distributional patterns, and substrate recurrences of freshwater ascomycetes by collecting dead submerged woody and herbaceous debris in lentic and lotic habitats at five selected sites along a north-central-south, temperate–subtropical latitudinal ecotone in Florida. One hundred and thirty-two fungal taxa were collected during the study. Seventy-four were meiosporic and 56 were mitosporic ascomycetes, while two species were basidiomycetes. Canonical analyses of principal coordinates (CAP) and Sørenson’s similarity index of species based on presence/absence data revealed a high turnover in species composition between the northern and southern sites, indicating a change in species composition along the temperate–subtropical latitudinal ecotone of the Florida Peninsula. Results from the ordination analysis indicated that freshwater ascomycete community composition is not significantly different between lentic and lotic habitats in Florida. The geographically broadly distributed species and species commonly found in Florida occurred in both habitats, whereas a number of new or rare species occurred in either lentic or lotic habitats, but not both. The same freshwater ascomycete species did not necessarily occur on both woody and herbaceous debris; of the 132 taxa collected, 100 were reported only on woody debris; 14 species occurred exclusively on herbaceous debris; and 18 species were found on both woody and herbaceous debris in lentic or lotic habitats. Implications of data from this study to the conservation and knowledge of biodiversity for freshwater ascomycetes is discussed.  相似文献   

16.
Many small farmland ponds are built for nutrient retention, the conservation of biodiversity or both, yet they are relatively neglected habitats. For example, little is known about the potential for ponds to influence populations of beneficial terrestrial insects, deliver ecosystem services across the aquatic–terrestrial boundary and affect crop yield in insect-pollinated cash crops.We assessed whether the presence of a pond affects the abundance of pollinators and the quality and quantity of strawberry yield. We compared the abundance of pollinators and the quality and quantity of strawberries between habitats adjacent to the pond, semi-natural terrestrial habitat and field border without semi-natural vegetation (control habitat).We found significantly higher abundances of syrphids and bees next to ponds compared to control habitats. Also, syrphids were significantly more abundant at pond habitats compared to vegetation habitats and a similar tendency, although not significant, was found for the abundance of bees. The quantity and quality of strawberries was significantly higher near the vegetation and pond habitats compared to the control habitats.Our result supports the theory that the presence of semi-natural habitats, in the agricultural landscape benefits both public interest in biodiversity conservation and farmers’ interest in crop pollination. These benefits may also come from ponds as semi natural habitats. However, further studies are required to disentangle the effect of the pond per se and the effect of the associated terrestrial vegetation.  相似文献   

17.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

18.
三峡水库的运行,改变了其坝下游的水沙情势,使坝下游沙洲生境呈现出明显的水淹强度梯度变化。阐明这一梯度变化下沙洲植被组成、分布和性状结构特征,是理解植被与沙洲稳定关系的基础,更是阐明三峡工程对长江中下游地区生态环境影响的核心内容之一。选取上荆江河段第一个江心洲-太平口心滩作为研究样地,通过植被组成和分布特征的调查,对不同水淹强度下群落物种组成、多样性和功能特征进行了深入分析。结果表明:太平口心滩植被组成以草本植物为主,稀布小型灌木川三蕊柳。调查共记录物种21科33属39种,以禾本科和菊科植物为主要优势种。轻微(20-40 d)和极强水淹强度(100+d)条件下的生境物种组成同其他水淹强度生境具有显著性差异,轻微水淹强度下牛鞭草和节节草为主要优势种,极强水淹强度下虉草为主要优势种。不同水淹强度下物种多样性指数差异显著,功能多样性指数和生物多样性指数趋势基本一致。随着水淹时间的延长,植被更倾向于表现出花果期位于出露期、植株高度更加低矮、须根系、进行营养繁殖的功能性状。江心洲植被的群落结构和功能性状特征都在水淹梯度下呈现出明显的梯度变化特征。这些研究结果表明水淹强度的梯度变化是沙洲植物群落变化的重要驱动因子,为进一步研究沙洲植物群落动态变化以及沙洲植被协同演替机制,明晰大坝影响下的生态环境变化提供重要依据。  相似文献   

19.
Hypothesis: For any one time and place a ‘functional signature’ can be derived for a sample of herbaceous vegetation in a way that concisely represents the balance between the different clusters of functional attributes that are present among component species. Methods: We developed a spreadsheet‐based tool for calculating functional signatures within the context of the C‐S‐R system of plant functional types. We used the tool to calculate and compare signatures for specimen British vegetation samples which differed in management regime and location in time. Conclusion: The integrative power of the ‘C‐S‐R signature’ is useful in comparative studies involving widely differing samples. Movements in the signature can be used to indicate degree of resistance, resilience, eutrophication and dereliction. Systems of plant functional types other than C‐S‐R might also be approached in this way. Availability: The tool can be downloaded free of charge from the first author's web pages or from the journal's electronic archive.  相似文献   

20.
Spatial technologies present possibilities for producing frequently updated and accurate habitat maps, which are important in biodiversity conservation. Assemblages of vegetation are equivalent to habitats. This study examined the use of satellite imagery in vegetation differentiation in South Africa's Kruger National Park (KNP). A vegetation classification scheme based on dominant tree species but also related to the park's geology was tested, the geology generally consisting of high and low fertility lithology. Currently available multispectral satellite imagery is broadly either of high spatial but low temporal resolution or low spatial but high temporal resolution. Landsat TM/ETM+ and MODIS images were used to represent these broad categories. Rain season dates were selected as the period when discrimination between key habitats in KNP is most likely to be successful. Principal Component Analysis enhanced vegetated areas on the Landsat images, while NDVI vegetation enhancement was employed on the MODIS image. The images were classified into six field sampling derived classes depicting a vegetation density and phenology gradient, with high (about 89%) indicative classification accuracy. The results indicate that, using image processing procedures that enhance vegetation density, image classification can be used to map the park's vegetation at the high versus low geological fertility zone level, to accuracies above 80% on high spatial resolution imagery and slightly lower accuracy on lower spatial resolution imagery. Rainfall just prior to the image date influences herbaceous vegetation and, therefore, success at image scene vegetation mapping, while cloud cover limits image availability. Small scale habitat differentiation using multispectral satellite imagery for large protected savanna areas appears feasible, indicating the potential for use of remote sensing in savanna habitat monitoring. However, factors affecting successful habitat mapping need to be considered. Therefore, adoption of remote sensing in vegetation mapping and monitoring for large protected savanna areas merits consideration by conservation agencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号