首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of β-mercaptoethanol-inhibited urease from Bacillus pasteurii, a highly ureolytic soil micro-organism, was solved at 1.65?Å using synchrotron X-ray cryogenic diffraction data. The structure clearly shows the unexpected binding mode of β-mercaptoethanol, which bridges the two nickel ions in the active site through the sulfur atom and chelates one Ni through the OH functionality. Another molecule of inhibitor forms a mixed disulfide with a Cys residue, thus sealing the entrance to the active site cavity by steric hindrance. The possible implications of the results on structure-based molecular design of new urease inhibitors are discussed.  相似文献   

2.
BACKGROUND: Urease catalyzes the hydrolysis of urea, the final step of organic nitrogen mineralization, using a bimetallic nickel centre. The role of the active site metal ions and amino acid residues has not been elucidated to date. Many pathologies are associated with the activity of ureolytic bacteria, and the efficiency of soil nitrogen fertilization with urea is severely decreased by urease activity. Therefore, the development of urease inhibitors would lead to a reduction of environmental pollution, to enhanced efficiency of nitrogen uptake by plants, and to improved therapeutic strategies for treatment of infections due to ureolytic bacteria. Structure-based design of urease inhibitors would require knowledge of the enzyme mechanism at the molecular level. RESULTS: The structures of native and inhibited urease from Bacillus pasteurii have been determined at a resolution of 2.0 A by synchrotron X-ray cryogenic crystallography. In the native enzyme, the coordination sphere of each of the two nickel ions is completed by a water molecule and a bridging hydroxide. A fourth water molecule completes a tetrahedral cluster of solvent molecules. The enzyme crystallized in the presence of phenylphosphorodiamidate contains the tetrahedral transition-state analogue diamidophosphoric acid, bound to the two nickel ions in an unprecedented mode. Comparison of the native and inhibited structures reveals two distinct conformations of the flap lining the active-site cavity. CONCLUSIONS: The mode of binding of the inhibitor, and a comparison between the native and inhibited urease structures, indicate a novel mechanism for enzymatic urea hydrolysis which reconciles the available structural and biochemical data.  相似文献   

3.
The use of biocementation via microbially induced carbonate precipitation (MICP) for improving the mechanical properties of weak soils in the laboratory has gained increased attention in recent years. This study proposes an approach for applying biocementation in situ, by combining the surface percolation of nutrients and cementation solution (urea/CaCl2) with in situ cultivation of indigenous soil urease positive microorganisms under non-sterile conditions. The enrichment of indigenous ureolytic soil bacteria was firstly tested in batch reactors. Using selective conditions (i.e., pH of 10 and urea concentrations of 0.17 M), highly active ureolytic microorganisms were enriched from four diverse soil samples under both oxygen-limited (anoxic) and oxygen-free (strictly anaerobic) conditions, providing final urease activities of more than 10 and 5 U/mL, respectively. The enrichment of indigenous ureolytic soil microorganisms was secondly tested in pure silica sand columns (300 and 1000 mm) for biocementation applications using the surface percolation approach. By applying the same selective conditions, the indigenous ureolytic soil microorganisms with high urease activity were also successfully enriched for both the fine and coarse sand columns. However, the in situ enriched urease activity was highly related to the dissolved oxygen of the percolated growth medium. The results showed that the in situ cultivated urease activity may produce non-clogging cementation over the entire 1000-mm columns, with unconfined compressive strength varying between 850–1560 kPa (for coarse sand) and 150–700 kPa (for fine sand), after 10 subsequent applications of cementation solution. The typically observed loss of ureolytic activity during the repeated application of the cementation solution was recovered by providing more growth medium under selective enrichment conditions, enabling the in situ enriched ureolytic microorganisms to increase in numbers and urease activity in such a way that continued cementation was possible.  相似文献   

4.
The molecular details of the protein complex formed by UreD, UreF, UreG, and UreE, accessory proteins for urease activation in the carcinogenic bacterium Helicobacter pylori, have been elucidated using computational modeling. The calculated structure of the complex supports the hypothesis of UreF acting as a GTPase activation protein that facilitates GTP hydrolysis by UreG during urease maturation, and provides a rationale for the design of new drugs against infections by ureolytic bacterial pathogens.  相似文献   

5.
Urease, a nickel-dependent metalloenzyme, is synthesized by plants, some bacteria, and fungi. It catalyzes the hydrolysis of urea into ammonia and carbon dioxide. Although the amino acid sequences of plant and bacterial ureases are closely related, some biological activities differ significantly. Plant ureases but not bacterial ureases possess insecticidal properties independent of its ureolytic activity. To date, the structural information is available only for bacterial ureases although the jack bean urease (Canavalia ensiformis; JBU), the best-studied plant urease, was the first enzyme to be crystallized in 1926. To better understand the biological properties of plant ureases including the mechanism of insecticidal activity, we initiated the structural studies on some of them. Here, we report the crystal structure of JBU, the first plant urease structure, at 2.05 Å resolution. The active-site architecture of JBU is similar to that of bacterial ureases containing a bi-nickel center. JBU has a bound phosphate and covalently modified residue (Cys592) by β-mercaptoethanol at its active site, and the concomitant binding of multiple inhibitors (phosphate and β-mercaptoethanol) is not observed so far in bacterial ureases. By correlating the structural information of JBU with the available biophysical and biochemical data on insecticidal properties of plant ureases, we hypothesize that the amphipathic β-hairpin located in the entomotoxic peptide region of plant ureases might form a membrane insertion β-barrel as found in β-pore-forming toxins.  相似文献   

6.
Proteus mirabilis is a pathogenic gram-negative bacterium that frequently causes kidney infections, typically established by ascending colonization of the urinary tract. The present study is focused on ureolytic activity and urease inhibition in biofilms generated by P. mirabilis O18 cells. Confocal microscopy revealed morphological alterations in biofilms treated with urea and a urease inhibitor (acetohydroxamic acid, AHA), as some swarmer cells were found to protrude from the biofilm. The presence of a quorum-sensing molecule (N-butanoyl homoserine lactone, BHL) increased biofilm thickness and its ureolytic activity. Laser interferometric determination of diffusion showed that urea easily diffuses through P. mirabilis biofilm, while AHA is blocked. This may suggest that the use of urease inhibitors in CAUTIs may by less effective than in other urease-associated infections. Spectroscopic studies revealed differences between biofilm and planktonic cells indicating that polysaccharides and nucleic acids are involved in extracellular matrix and biofilm formation.  相似文献   

7.
The decomposition of urea by Nitellopsis obtusa from Characeae was investigated. The intact cells were exposed to the inhibition by two typical urease inhibitors: boric acid and fluoride ion, used as a criterion to define if urease or UAL-ase is responsible for the ureolytic activity of the algae. It was found that boric acid and fluoride ion are simple competitive and slow-binding competitive inhibitors of Nitellopsis obtusa enzyme respectively, which is the response characteristic of urease. The inhibition constants equal to 2.3 and 0.1 mM for boric acid and fluoride ion, when compared to those of jack bean urease, indicate that in the observed kinetic behaviour of Nitellopsis obtusa urease partake transport processes taking place in the intact cells.  相似文献   

8.
In general, bioprocesses can be subdivided into naturally occurring processes, not requiring sterility (e.g., beer brewing, wine making, lactic acid fermentation, or biogas digestion) and other processes (e.g., the production of enzymes and antibiotics) that typically require a high level of sterility to avoid contaminant microbes overgrowing the production strain. The current paper describes the sustainable, non-sterile production of an industrial enzyme using activated sludge as inoculum. By using selective conditions (high pH, high ammonia concentration, and presence of urea) for the target bacterium, highly active ureolytic bacteria, physiologically resembling Sporosarcina pasteurii were reproducibly enriched and then continuously produced via chemostat operation of the bioreactor. When using a pH of 10 and about 0.2 M urea in a yeast extract-based medium, ureolytic bacteria developed under aerobic chemostat operation at hydraulic retention times of about 10 h with urease levels of about 60 μmol min?1 ml?1 culture. For cost minimization at an industrial scale the costly protein-rich yeast extract medium could be replaced by commercial milk powder or by lysed activated sludge. Glutamate, molasses, or glucose-based media did not result in the enrichment of ureolytic bacteria by the chemostat. The concentration of intracellular urease was sufficiently high such that the produced raw effluent from the reactor could be used directly for biocementation in the field.  相似文献   

9.
Although a diverse range of chemical entities offering striking therapeutic potential against urease enzyme has been reported, the key challenges (toxicity and safety) associated with these inhibitors create a large unmet medical need to unveil new, potent and safe inhibitors of urease enzyme. In this pursuit, the present study demonstrates the successful synthesis of carbazole-chalcone hybrids (4a-n) in good yields. The evaluation of the preliminary in vitro biological results showed that selected members of the investigated library of hybrid compounds possess excellent urease inhibitory efficacy. In particular, compounds 4c and 4k were the most potent inhibitors with lowest IC50 values of 8.93 ± 0.21 and 6.88 ± 0.42 μM, respectively. Molecular docking analysis of the most potent inhibitor 4k suggests that the compound is fitted neatly at the active site interface and mediates interaction with both nickel atoms present in the active site. Several other obvious interactions including metal-carbonyl contact, hydrogen bonding and hydrophobic interactions were also observed, playing a crucial part in the stabilization of 4k in the active site of urease.  相似文献   

10.
In agriculture high urease activity during urea fertilization causes substantial environmental and economical problems by releasing abnormally large amount of ammonia into the atmosphere which leads to plant damage as well as ammonia toxicity. All over the world, urea is the most widely applied nitrogen fertilizer. Due to the action of enzyme urease; urea nitrogen is lost as volatile ammonia. For efficient use of nitrogen fertilizer, urease inhibitor along with the urea fertilizer is one of the best promising strategies. Urease inhibitors also provide an insight in understanding the mechanism of enzyme catalyzed reaction, the role of various amino acids in catalytic activity present at the active site of enzyme and the importance of nickel to this metallo enzyme. By keeping it in view, the present study was designed to dock three urease inhibitors namely Hydroquinone (HQ), Phenyl Phosphorodiamate (PPD) and N-(n-butyl) Phosphorothiocic triamide (NBPT) against Hydroquinone glucosyltransferase using molecular docking approach. The 3D structure of Hydroquinone glucosyltransferase was predicted using homology modeling approach and quality of the structure was assured using Ramachandran plot. This study revealed important interactions among the urease inhibitors and Hydroquinone glucosyltransferase. Thus, it can be inferred that these inhibitors may serve as future anti toxic constituent against plant toxins.  相似文献   

11.

Background

Helicobacter pylori is a bacterium strongly associated with gastric cancer. It thrives in the acidic environment of the gastric niche of large portions of the human population using a unique adaptive mechanism that involves the catalytic activity of the nickel-dependent enzyme urease. Targeting urease represents a key strategy for drug design and H. pylori eradication.

Method

Here, we describe a novel method to screen, directly in the cellular environment, urease inhibitors. A ureolytic Escherichia coli strain was engineered by cloning the entire urease operon in an expression plasmid and used to test in-cell urease inhibition with a high-throughput colorimetric assay. A two-plasmid system was further developed to evaluate the ability of small peptides to block the protein interactions that lead to urease maturation.

Results

The developed assay is a robust cellular model to test, directly in the cell environment, urease inhibitors. The efficacy of a co-expressed peptide to affect the interaction between UreF and UreD, two accessory proteins necessary for urease activation, was observed. This event involves a process that occurs through folding upon binding, pointing to the importance of intrinsically disordered hot spots in protein interfaces.

Conclusions

The developed system allows the concomitant screening of a large number of drug candidates that interfere with the urease activity both at the level of the enzyme catalysis and maturation.

General significance

As inhibition of urease has the potential of being a global antibacterial strategy for a large number of infections, this work paves the way for the development of new candidates for antibacterial drugs.  相似文献   

12.
The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery.  相似文献   

13.
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.  相似文献   

14.
Urease is an enzyme of amidohydrolase family and is responsible for the different pathological conditions in the human body including peptic ulcers, catheter encrustation, kidney stone formation, hepatic coma, encephalopathy, and many others. Therefore, the search for potent urease inhibitors has attracted major scientific attention in recent years. Urea and thiourea derivatives of tryptamine (125) were synthesized via reaction of tryptamine with different substituted phenyl isocyanates/isothiocyanates. The synthetic compounds were evaluated for their urease enzyme inhibitory activity and they exhibited good inhibitory potential against urease enzyme in the range of (IC50 = 11.4 ± 0.4–24.2 ± 1.5 μM) as compared to the standard thiourea (IC50 = 21.2 ± 1.3 μM). Out of twenty-five compounds, fourteen were found to be more active than the standard. Limited structure-activity relationship suggested that the compounds with CH3, and OCH3 substituents at aryl part were the most potent derivatives. Compound 14 (IC50 = 11.4 ± 0.4 μM) with a methyl substituent at ortho position was found to be the most active member of the series. Whereas, among halogen substituted derivatives, para substituted chloro compound 16 (IC50 = 13.7 ± 0.9 μM) showed good urease inhibitory activity. These synthetic derivatives were found to be non-cytotoxic in cellular assay. Kinetic studies revealed that the compounds 11, 12, 14, 17, 21, 22, and 24 showed a non-competitive type of inhibition. In silico study identified the possible bindings interactions of potential inhibitors with the active site of enzyme. These newly identified inhibitors of urease enzyme can serve as leads for further research and development.  相似文献   

15.
Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that might be possible when inhibitors bind to the enzyme cofactor complex, were constructed. The binding of the two alcohol competitive inhibitors were studied using automatic docking by the Internal Coordinate Mechanics program, molecular dynamic (MD) simulations with the AMBER program package, calculation of the free energy of ligand binding by the linear interaction energy method, and the hydropathic interactions force field. The calculations indicated that deprotonated Tyr acts as a strong base in the binary enzyme-NAD+ complex. Molecular dynamic simulations for 5 ns confirmed that deprotonated Tyr is essential for anchoring and orientating the inhibitors at the active site, which might be a general trend for the family of SDRs. The findings here have implications for the development of therapeutically important SDR inhibitors.  相似文献   

16.
The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding.  相似文献   

17.
The increasing resistance of pathogens to common antibiotics, as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications, has stimulated the development of novel classes of molecules that target urease as an enzyme. In this context, the newly developed compounds on the basis of 1-heptanoyl-3-arylthiourea family were evaluated for Jack bean urease enzyme inhibition activity to validate their role as potent inhibitors of this enzyme. 1-Heptanoyl-3-arylthioureas were obtained in excellent yield and characterized through spectral and elemental analysis. All the compounds displayed remarkable potency against urease inhibition as compared to thiourea standard. It was found that novel compounds fulfill the criteria of drug-likeness by obeying Lipinski’s rule of five. Particularly compound 4a and 4c can serve as lead molecules in 4D (drug designing discovery and development). Kinetic mechanism and molecular docking studies also carried out to delineate the mode of inhibition and binding affinity of the molecules.  相似文献   

18.
The essential enzyme thymidylate synthase-dihydrofolate reductase (TS-DHFR) is a validated drug target for many pathogens, but has been elusive in Cryptosporidium hominis, as active site inhibitors of the enzymes from related parasitic protozoa show decreased potency and lack of species specificity over the human enzymes. As a rational approach to discover novel inhibitors, we conducted a virtual screen of a non-active site pocket in the DHFR linker region. From this screen, we have identified and characterized a noncompetitive inhibitor, flavin mononucleotide (FMN), with micromolar potency that is selective for ChTS-DHFR versus the human enzymes. These results describe a novel allosteric pocket amenable to inhibitor targeting, and a lead compound with which to move towards potent, selective inhibitors of ChTS-DHFR.  相似文献   

19.
KdsB (3-deoxy-manno-octulosonate cytidylyltransferase) is a highly specific and selective bacterial enzyme that catalyzes KDO (3-Deoxy-D-mano-oct-2-ulosonic acid) activation in KDO biosynthesis pathway. Failure in KDO biosynthesis causes accumulation of lipid A in the bacterial outer membrane that leads to cell growth arrest. This study reports a combinatorial approach comprising virtual screening of natural drugs library, molecular docking, computational pharmacokinetics, molecular dynamics simulation, and binding free energy calculations for the identification of potent lead compounds against the said enzyme. Virtual screening demonstrated 1460 druglike compounds in a total of 4800, while molecular docking illustrated Ser13, Arg14, and Asp236 as the anchor amino acids for recognizing and binding the inhibitors. Functional details of the enzyme in complex with the best characterized compound-226 were explored through two hundred nanoseconds of MD simulation. The ligand after initial adjustments jumps into the active cavity, followed by the deep cavity, and ultimately backward rotating movement toward the initial docked site of the pocket. During the entire simulation period, Asp236 remained in contact with the ligand and can be considered as a major catalytic residue of the enzyme. Radial distribution function confirmed that toward the end of the simulation, strengthening of ligand-receptor occurred with ligand and enzyme active residues in close proximity. Binding free energy calculations via MM(PB/GB)SA and Waterswap reaction coordinates, demonstrated the high affinity of the compound for enzyme active site residues. These findings can provide new avenues for designing potent compounds against notorious bacterial pathogens.  相似文献   

20.
Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号