首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the difficulty of identifying many taxa of freshwater invertebrates to species, many researchers have assessed the utility of surrogates for species-level identifications (e.g. higher taxa) in bioassessment programs. Here, we examined the efficiency of two different approaches to species surrogacy, one using coarser taxonomic resolution and a second approach based on random aggregation (“Best practicable aggregation of species”, BestAgg), in portraying patterns of stream macroinvertebrates in Central China. The main objectives were: (1) to compare the discriminatory power of biodiversity indices and assemblage structure for different levels of human disturbances based on different taxonomic resolution and on BestAgg; (2) to identify the congruence of assemblage-environment and biodiversity-indices-environment relationships for datasets at the species level versus those at surrogate levels. We found that genus-level and BestAgg datasets accurately reproduced the pattern of species-level communities, whereas family- and order-level datasets did not. Specifically, both genus-level and BestAgg approaches performed almost as well as species-level data in distinguishing sites subjected to different disturbance levels. Most of the environmental variables that were important for species-level assemblages, also emerged as significant when analyzing genera and BestAgg surrogates, as shown by both analyses of indices and assemblage composition according to distance-based ordination models. Our results suggest that genus-level taxonomy, which resulted in the least loss of ecological information relative to species-level identification, is sufficient in studies of community ecology and bioassessment of stream macroinvertebrates in Central China. In addition, the BestAgg approach, which required identification of fewer taxa than genus-level analysis, has a similar ability to depict multivariate patterns of macroinvertebrate assemblages and differentiate different disturbance levels. Applying our results could enhance speed and cost-effectiveness of freshwater biomonitoring and bioassessment programs; however, independent determination of best taxonomic level and BestAgg will be required whenever a new geographic area or habitat type is assessed.  相似文献   

2.
Design and establishment of ecologically good networks of conservation areas often requires quick assessments of their biodiversity. Reliable indicators would be useful when doing such assessments. In order to explore the potential indicators for species richness in boreal forests, we studied (1) the co-variation of species richness and composition of species assemblages among beetles, polypores, birds and vascular plants, (2) the relationships between species richness and four boreal forest site types, (3) the relationship between species richness and forest physical structure and (4) the suitability of potential indicator groups within the four taxa to predict the species richness generally. The data show that there are probably not a single taxonomic or forest structural characteristic to be used as a general biodiversity indicator or surrogate for all the species. The correlations in species richness among the four taxa studied were low. However, group-specific indicators were obvious: forest site type was a good surrogate for vascular plant richness, and quantity and quality of dead wood predicted the species richness of polypores. The results support the view that different indicators shall be used for different forest types and taxonomic groups. These indicators should facilitate relatively rapid methods to assess biodiversity patterns at the forest stand level.  相似文献   

3.
In boreal forests, the level of naturalness and the stage of succession explain most of the variation in forest structure within a particular forest type. Thus, these two factors should also have a major effect on species assemblages in forests, at least on species groups associated with wood. The present study is the first attempt to analyze empirically the simultaneous effects of forest succession and naturalness on wood-inhabiting fungi, a taxonomic group of special ecological importance. The study area was situated in eastern Finland, middle boreal zone. A total of 41 study plots were established in Pinus sylvestris forests representing three levels of forest naturalness: natural, seminatural and intensively managed forests. Five stages of succession were distinguished according to the age of the dominating tree layer (<10, 40, 70, 110, and >150 yr old), except in managed forests where only four stages were available. A total of 5328 records of 195 species of fungi were made. The first, open stage of succession was clearly the most species-rich period of succession in all levels of forest naturalness. In natural and seminatural forests, the first stage of succession was also very distinctive in its fungal composition, and thus of special value in protecting biodiversity in boreal forests. In the succession following the first stage, the level of naturalness had more effect on assemblages of fungi than did the stage of succession. Intensive forest management affects threatened species particularly. In conclusion, natural young stages of succession should also be included in the network of boreal forest reserves.  相似文献   

4.
Extensive surveys of biodiversity in protected and managed areas have not been conducted for a majority of taxonomic groups and ecosystem types, which makes it difficult to assess how large a portion of biodiversity is at least potentially under protection. The situation is the same in boreal regions, and only preliminary analyses of the biodiversity patterns of less well-known organism groups, including many freshwater taxa, within the protected area network have been conducted. We studied patterns of species richness and community composition of algae, macrophytes (bryophytes and vascular plants), and macroinvertebrates of headwater streams draining protected areas and managed forests in a boreal drainage basin in Finland. We found no significant differences in the species richness and community composition of these organism groups between the protected and managed streams. Gamma- and beta-diversity varied strongly among the protected and managed stream groups, yet this variation was contingent on the organism group and the beta-diversity measure used. In general, there was much species turnover within both protected and managed stream groups, masking any between-group differences. However, we found a number of redlisted and rare species in our surveys. Of these species, several macrophyte species occurred more frequently in the protected streams. By contrast, rare species of algae and macrophytes did not generally show such inclinations to the protected streams. We found no strong congruence in species richness or community dissimilarity between algae, macrophytes, and macroinvertebrates, suggesting that the main anthropogenic gradient in terms of forestry is not strong enough to modify stream environmental conditions and thereby shape biodiversity in the focal drainage basin. This finding also suggests that surveys of aquatic biodiversity across protected and managed landscapes should not rely too heavily on the surrogate taxon approach, but instead should consider patterns shown by multiple taxonomic groups that represent biologically and ecologically disparate organisms. Our results indeed suggest that the levels of alpha-, beta-, and gamma-diversity show differing among-taxon responses to forest management and naturalness of headwater streams.  相似文献   

5.
Due to the problem of identification, Chironomidae larvae, although very abundant, are often avoided or not properly used in bioassessment programs. The aim of this work was to test how different aggregation processes—taxonomic resolution and the random aggregation approach (best practicable aggregation of species—BestAgg) affect the analysis of chironomid communities regarding any information loss. The self-organizing map method, together with classification strength analysis and Spearman’s rank correlation, revealed that the genus-level and BestAgg-abundance matrix most accurately approximated the species-level community pattern. The subfamily-level dataset was ineffective at presenting the chironomid community structure, with a substantially lower concordance with the species-level dataset. The biologic environmental gradients analyses presented the same set of important environmental variables for the species-level, genus-level, and BestAgg-abundance matrix. The indicator values analysis showed that indicator genera provide information very close to that gained from species indicators. According to our results, the numeric relationship between species and higher taxa influences taxonomic scaling, limiting Chironomidae family aggregation, with acceptable information loss only up to genus level. In addition, the BestAgg approach, with the maximum level of aggregation, properly assesses the community structure and consequently describes environmental conditions.  相似文献   

6.

Background

The boreal forest of Canada is home to several hundred thousands Aboriginal people who have been using medicinal plants in traditional health care systems for thousands of years. This knowledge, transmitted by oral tradition from generation to generation, has been eroding in recent decades due to rapid cultural change. Until now, published reviews about traditional uses of medicinal plants in boreal Canada have focused either on particular Aboriginal groups or on restricted regions. Here, we present a review of traditional uses of medicinal plants by the Aboriginal people of the entire Canadian boreal forest in order to provide comprehensive documentation, identify research gaps, and suggest perspectives for future research.

Methods

A review of the literature published in scientific journals, books, theses and reports.

Results

A total of 546 medicinal plant taxa used by the Aboriginal people of the Canadian boreal forest were reported in the reviewed literature. These plants were used to treat 28 disease and disorder categories, with the highest number of species being used for gastro-intestinal disorders, followed by musculoskeletal disorders. Herbs were the primary source of medicinal plants, followed by shrubs. The medicinal knowledge of Aboriginal peoples of the western Canadian boreal forest has been given considerably less attention by researchers. Canada is lacking comprehensive policy on harvesting, conservation and use of medicinal plants. This could be explained by the illusion of an infinite boreal forest, or by the fact that many boreal medicinal plant species are widely distributed.

Conclusion

To our knowledge, this review is the most comprehensive to date to reveal the rich traditional medicinal knowledge of Aboriginal peoples of the Canadian boreal forest. Future ethnobotanical research endeavours should focus on documenting the knowledge held by Aboriginal groups that have so far received less attention, particularly those of the western boreal forest. In addition, several critical issues need to be addressed regarding the legal, ethical and cultural aspects of the conservation of medicinal plant species and the protection of the associated traditional knowledge.  相似文献   

7.
Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.  相似文献   

8.
Aim The aim of this study was to compare diversity patterns of insect communities associated with the wood‐decaying Fomitopsis fungi in north‐east (NE) Asia and Fennoscandia. We hypothesized that the diversity of the fungal–insect communities is greater in NE Asia, because the region was one of the largest refugia of boreal species during the last Pleistocene glaciation. Location This study was conducted in boreal forests in NE People's Republic of China, and in south‐central Finland. Methods Fruiting bodies of three Fomitopsis species were collected from the field in order to rear the insects inhabiting the fruiting bodies. Taxonomic uniqueness, diversity and food web structure of the insect assemblages were analysed using hierarchical cluster analysis, diversity indices and analyses of food web compartmentalization, respectively. Results Contrary to the expectations, the richness of families, genera and species was greater in Finland than in NE China. This applied for the overall Fomitopsis‐associated insect assemblage, as well as for the fungal species separately. The taxonomic composition at the level of families and genera was similar between the two regions. The level of monophagy was higher in Finland and the food web was divided into compartments corresponding to the two Fomitopsis species. Main conclusion The often‐suggested higher diversity in refugial areas does not apply for all taxa in boreal forests, such as fungivorous insects associated with Fomitopsis fungi.  相似文献   

9.
附生维管植物是热带、亚热带湿性山地森林植物群落中物种最为丰富的类群之一, 在维系森林生物多样性及生态系统功能与服务中发挥着重要作用, 然而附生维管植物调查相对困难, 在多样性调查和统计中往往被忽视, 迄今为止我国尚缺乏全国范围的森林附生维管植物名录。本项研究基于已公开发布的数据库, 搜集并整理了1982-2022年间的关于中国森林附生维管植物研究的文献书籍。首先, 提取文献资料中的有效信息, 依据物种2000中国节点的数据进行标准化校正, 整理出中国森林附生维管植物共计49科246属1,739种, 然后据此编写了相对准确、完整的中国森林附生维管植物物种名录。本名录作为我国第一个全国性森林附生维管植物名录, 可为森林生物多样性保护工作提供重要的数据支持, 并能为深入研究附生维管植物的进化生物学、生物地理学及宏观生态学等领域提供重要的基础信息。  相似文献   

10.
Biodiversity conservation of forest ecosystems strongly relies on effective dead wood management. However, the responses of saproxylic communities to variations in dead wood characteristics remains poorly documented, a lack of knowledge that may impede the development of efficient management strategies. We established the relationship between saproxylic beetles—at the species and community levels—and attributes of black spruce and balsam fir in old-growth boreal forests. The relationship was first evaluated for individual snag bole segments, and then for forest stands. A total of 168 bole sections were collected in summer 2006 along a compositional gradient ranging from black spruce-dominated stands to balsam fir-dominated ones, in a boreal forest dominated by >90-year-old stands. A total of 16,804 beetles belonging to 47 species emerged from bole segments, with 21% of the species being found exclusively in black spruce snags and 36% exclusively in balsam fir snags. Black spruce and balsam fir snags thus contributed differently to forest biodiversity by being inhabited by different saproxylic communities. Wood density was an important attribute in the host-use patterns for several species of saproxylic beetles, but no relationship was found between snag availability within stands and abundance of beetles strongly linked to either black spruce or balsam fir. Our study outlines the relative contribution of tree compositional diversity to saproxylic species, while highlighting the contribution of black spruce and balsam fir to animal diversity in old-growth boreal forests.  相似文献   

11.
Transformations of natural landscapes and their biodiversity have become increasingly dramatic and intense, creating a demand for rapid and inexpensive methods to assess and monitor ecosystems, especially the most vulnerable ones, such as aquatic systems. The speed with which surveys can collect, identify, and describe ecological patterns is much slower than that of the loss of biodiversity. Thus, there is a tendency for higher-level taxonomic identification to be used, a practice that is justified by factors such as the cost-benefit ratio, and the lack of taxonomists and reliable information on species distributions and diversity. However, most of these studies do not evaluate the degree of representativeness obtained by different taxonomic resolutions. Given this demand, the present study aims to investigate the congruence between species-level and genus-level data for the infraorder Nepomorpha, based on taxonomic and numerical resolutions. We collected specimens of aquatic Nepomorpha from five streams of first to fourth order of magnitude in the Pindaíba River Basin in the Cerrado of the state of Mato Grosso, Brazil, totaling 20 sites. A principal coordinates analysis (PCoA) applied to the data indicated that species-level and genus-level abundances were relatively similar (>80% similarity), although this similarity was reduced when compared with the presence/absence of genera (R = 0.77). The presence/absence ordinations of species and genera were similar to those recorded for their abundances (R = 0.95 and R = 0.74, respectively). The results indicate that analyses at the genus level may be used instead of species, given a loss of information of 11 to 19%, although congruence is higher when using abundance data instead of presence/absence. This analysis confirms that the use of the genus level data is a safe shortcut for environmental monitoring studies, although this approach must be treated with caution when the objectives include conservation actions, and faunal complementarity and/or inventories.  相似文献   

12.
Although Asian bamboo species constitute a non-timber forest product of major cultural and economic importance, no detailed regional assessment of their distribution patterns has previously been made. To assess the potential of the existing bamboo species distribution data for production of regional mapping tools for planning the conservation of forest-based biodiversity, data on bamboo distribution and forest cover were combined. Over 1000 bamboo species from 60 genera of woody bamboos were incorporated, allowing the mapping of individual species or groups of species and genera, along with potential species richness and biodiversity hotspots. Over 6.3 million km2 of Asian forest potentially contains bamboo, with highest densities indicated from northeastern India through Burma to southern China, and through Sumatra to Borneo. The highest figures for potential species richness (144 spp per square km) were recorded in forests of south China, including Hainan Island. Despite substantial inadequacies and inconsistencies in knowledge of the taxonomy and distribution of bamboo species, this approach may provide a valuable tool for planning in situ conservation of forest biodiversity.  相似文献   

13.
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. "Backyard biodiversity", defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of "backyard biodiversity" specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability.  相似文献   

14.
The degree to which different taxonomic groups show congruence in diversity patterns has attracted increased attention, yet such studies on stream biota are lacking. We examined environmental correlates of and congruence in the species richness patterns of bryophytes, macroinvertebrates, and fish in 101 boreal streams in Finland. Congruence in species richness among the taxonomic groups was generally low, mainly because of their differing responses to major environmental gradients. Bryophytes and macroinvertebrates showed the strongest degree of congruence, but even this relationship had a relatively weak predictive power. Bryophyte diversity showed the strongest relationship with water colour, followed by habitat stability, and stream size. Macroinvertebrate diversity increased with stream size, and further variation was accounted for by water colour and acidity. Fish species richness showed a weak and complex relationship with geographical location, stream size, and in-stream habitat characteristics. The regression models explained 23, 45, and 26% of the variation in species richness of bryophytes, macroinvertebrates, and fish, respectively. Our results suggest that indicator taxa may be of limited value in stream biodiversity inventories. Habitat-based approaches are suggested as an alternative surrogate measure in the conservation evaluation of lotic biodiversity.  相似文献   

15.
Local biodiversity has traditionally been estimated with taxonomic diversity metrics such as species richness. Recently, the concept of biodiversity has been extended beyond species identity by ecological traits determining the functional role of a species in a community. This interspecific functional diversity typically responds more strongly to local environmental variation compared with taxonomic diversity, while taxonomic diversity may mirror more strongly dispersal processes compared with functional metrics. Several trait‐based indices have been developed to measure functional diversity for various organisms and habitat types, but studies of their applicability on aquatic microbial communities have been underrepresented. We examined the drivers and covariance of taxonomic and functional diversity among diatom rock pool communities on the Baltic Sea coast. We quantified three taxonomic (species richness, Shannon''s diversity, and Pielou''s evenness) and three functional (functional richness, evenness, and divergence) diversity indices and determined abiotic factors best explaining variation in these indices by generalized linear mixed models. The six diversity indices were highly collinear except functional evenness, which merely correlated significantly with taxonomic evenness. All diversity indices were always explained by water conductivity and temperature–sampling month interaction. Taxonomic diversity was further consistently explained by pool distance to the sea, and functional richness and divergence by pool location. The explained variance in regression models did not markedly differ between taxonomic and functional metrics. Our findings do not clearly support the superiority of neither set of diversity indices in explaining coastal microbial diversity, but rather highlight the general overlap among the indices. However, as individual metrics may be driven by different factors, the greatest advantage in assessing biodiversity is nevertheless probably achieved with a simultaneous application of the taxonomic and functional diversity metrics.  相似文献   

16.
Origins of mangrove ecosystems and the mangrove biodiversity anomaly   总被引:7,自引:0,他引:7  
1. Mangrove species richness declines dramatically from a maximum in the Indo-West Pacific (IWP) to a minimum in the Caribbean and Western Atlantic. Explaining this ‘anomalous’ biogeographic pattern has been a focus of discussion for most of this century. 2. Two hypotheses have been put forward to explain the mangrove biodiversity anomaly. The ‘centre-of-origin hypothesis’ asserts that all mangrove taxa originated in the IWP and subsequently dispersed to other parts of the world. The ‘vicariance hypothesis’ asserts that mangrove taxa evolved around the Tethys Sea during the Late Cretaceous, and regional species diversity resulted from in situ diversification after continental drift. 3. Five lines of evidence are used to test between these two hypotheses. First, we review the mangrove fossil record. Second, we compare modern and fossil distributions of mangroves and eight genera of gastropods that show high fidelity to the mangrove environment. Third, we describe species-area relationships of mangroves and associated gastropods with respect to area of available habitat. Fourth, we analyse patterns of nestedness of individual plant and gastropod communities in mangrove forests. Fifth, we analyse patterns of nestedness of individual plant and gastropod species. 4. All five lines of evidence support the vicariance hypothesis. The first occurrences in the fossil record of most mangrove genera and many genera of gastropods associated with mangrove forests appear around the Tethys Sea from the Late Cretaceous through the Early Tertiary. Globally, species richness in any given mangrove forest is tightly correlated with available area. Patterns of nestedness at the community and species-level both point towards three independent regions of diversification of mangrove ecosystems: South-east Asia, the Caribbean and Eastern Pacific, and the Indian Ocean region.  相似文献   

17.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

18.
It is a globally important challenge to meet increasing demands for resources and, at the same time, protect biodiversity and ecosystem services. Farming is usually regarded as a major threat to biodiversity due to its expansion into natural areas. We compared biodiversity of bees and wasps between heterogeneous small-scale farming areas and protected forest in northern coastal Belize, Central America. Malaise traps operated for three months during the transition from wet to dry season. Farming areas consisted of a mosaic of mixed crop types, open habitat, secondary forest, and agroforestry. Mean species richness per site (alpha diversity), as well as spatial and temporal community variation (beta diversity) of bees and wasps were equal or higher in farming areas compared to protected forest. The higher species richness and community variation in farmland was due to additional species that did not occur in the forest, whereas most species trapped in forest were also found in farming areas. The overall regional species richness (gamma diversity) increased by 70% with the inclusion of farming areas. Our results suggest that small-scale farming systems adjacent to protected forest may not only conserve, but even favour, biodiversity of some taxonomic groups. We can, however, not exclude possible declines of bee and wasp diversity in more intensified farmland or in landscapes completely covered by heterogeneous farming systems.  相似文献   

19.
Taxonomic sufficiency (TS) — defined as the minimum taxonomic detail required to discern some ecological pattern of interest — has been used extensively in bioassessment and biodiversity studies as a way of avoiding a portion of the time and monetary costs associated with species diagnoses. The taxonomic sufficiency for detecting species-level patterns among floodplain-lake benthic-invertebrate assemblages remains unexplored. We examined cross-taxonomic-level congruence in assemblage-environment relationships among 23 Chinese floodplain lakes. Our objectives were: (1) to compare the correlation between species richness and density and those at coarser taxonomic resolution; (2) to identify whether assemblage-environment relationships depend on taxonomic scale; and (3) to test whether the proportion of between-lake variability accounted for by environmental variables was independent of taxonomic scale. When taxonomic structure was described using sequentially coarser taxonomic aggregations, species-level patterns of richness and abundance were sequentially obscured (i.e., genus-level taxonomy best preserved patterns in species composition, order- and class-level taxonomy poorly represented species composition). Similar environmental variables were important for distinguishing lake species assemblages and genus assemblages; however, different environmental variables were important for describing family-, order-, and class-level assemblage patters. Moreover, environmental variables accounted for a similar amount of biological variability, regardless of taxonomic scale. Our results suggest genus taxonomy as sufficient for rapid assessments of lake diversity. Numerical dominance of the species- and genus-rich Chironomidae, Tubificidae, and Naididae, may account for the marked loss of information that occurs when lake invertebrates are assigned only to their families. In summary, we describe taxonomic sufficiency to detecting patterns of richness and abundance among subtropical lake macroinvertebrate faunas. This study will interest Chinese benthologists concerned with conservation and bioassessment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号