首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prescribed burning has been important in maintaining the structure of plant communities in the tallgrass prairie. However, implementation of these burn regimes often overlooks responses of other taxa, particularly arthropods. In this study, the timing and frequency of burns were examined on one of the most diverse and abundant groups of herbivorous insects, Auchenorrhyncha. These insects are ideal candidates in understanding the effects of fire on prairie arthropods because they are among the most numerous invertebrate herbivores in the prairie and they have ecological characteristics that confer a wide range of responses to prescribed burning. A total of 19 Illinois hill prairies were sampled along the Mississippi and Sangamon Rivers in the summer of 2006 using a modified leaf-blower vacuum. These sites exhibited a wide range of burn management, from unburned to recently burned, and having been burned multiple times. Species richness, Auchenorrhyncha Quality Index (with and without abundance data) and the mean coefficient of conservatism (with and without abundance data) were calculated for each site. Results suggest that unburned sites supported the greatest number of species and had higher Auchenorrhyncha Quality Index and mean coefficient of conservatism values than sites undergoing burn management. In order for land managers to maintain the prairie Auchenorrhyncha community and conserve vascular plants, this study recommends infrequent rotational burning with a minimum of 3?C5?years; although additional studies are needed to determine the appropriate number of years between each burn.  相似文献   

2.
Auchenorrhyncha (i.e., leafhoppers, treehoppers, spittlebugs, and planthoppers) represent some of the most diverse groups of herbivorous insects in the tallgrass prairie biome, they have close associations with many native prairie grasses and forbs, and respond in predictable ways to changes in native grassland degradation. These attributes make Auchenorrhyncha ideal candidates in the development of a habitat quality index to measure tallgrass prairie quality. In this study we propose the development of a species-based habitat quality index called the Auchenorrhyncha quality index or AQI as a useful method in tracking the condition of tallgrass prairie quality. The AQI is computed by summing six ecological characteristics (i.e., host plant specificity, voltinism, overwintering microhabitat, wing length, habitat fidelity, and origin) for each Auchenorrhynchan insect encountered, yielding coefficient of conservatism (CC) values that range from 0 (habitat generalist/tolerant to disturbance) to 18 (habitat specific/intolerant to disturbance). These CC values are averaged and combined with species richness producing un-weighted by abundance AQI (AQIw/outN) and weighted by abundance AQI (AQIw/N). The performance of the AQI was evaluated by examining the effects of sampling intensity on this index using a sweep net and a vacuum apparatus from 10 sites located on the three main North American tallgrass prairie communities, wet-mesic, sand, and loess hill. Scientists and land managers can adequately sample Auchenorrhyncha from four transects using a vacuum. Also, the highest AQI values were found from loess hill and sand prairies, indicating that conservation efforts should focus on these prairie communities. Additional applications of the AQI may include: (1) discriminating prairie quality at various spatial scales; (2) testing hypotheses about the effects of disturbance on prairie habitat (e.g. prescribed burning); (3) using the AQI as a model in developing habitat quality indices based on other diverse groups of grassland insects; and (4) the AQI has the capacity to be readily modified in assessing the quality of other biomes. Ultimately, the AQI should be used in combination with other habitat quality indices based on other diverse groups of organisms, such as plants and other insects, to provide a more complete assessment of native habitat quality.  相似文献   

3.
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single‐place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black‐tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black‐tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off‐colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White‐tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black‐tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black‐tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing‐tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single‐place studies.  相似文献   

4.
We propose that patterns of plant functional group occurrences could be a reliable indicator of prairie vegetation quality. A method for assessing tallgrass prairie quality based on density and composition of plant functional groups was developed and tested by comparison with qualitative indices calculated from species data at 17 prairies in Illinois. Species sample data were recorded from quadrats while functional group data were recorded from segments of belt transects overlying the species sample transects. Prairies selected include remnants and restorations and represent a wide range of habitat quality including recognized natural areas, degraded remnants, and prairie plantings of varying age and success. For agglomerative clustering of prairie quality classes, a matrix of habitat indices and metrics was used based on species sample data from all sites. Three groups were identified in cluster analysis that were characteristic of high, medium, and low-quality prairies. Mean Functional Group Density (Mean FGD), an index developed based on the mean products of frequency and density among plant functional groups recorded from belt transects at each site, had the highest correlations to habitat quality indices among two other functional group indices tested. Mean FGD was highly correlated with the mean coefficient of conservatism and floristic quality index, indices calculated from species sample data that have been shown to be reliable indicators of habitat quality. In means comparison tests among prairie quality classes, Mean FGD differentiated high-quality from medium and low-quality prairies, but did not distinguish medium from low-quality sites (only two low-quality sites were identified), although rank order of Mean FGD was as predicted. There is a tradeoff in efficiency and precision between species-level and functional group sample data. Species-level data more precisely discriminate differences in low and medium-quality sites; however, functional group sampling is much more rapid requiring only 20-to-25% of the time required for collecting species-level data. Results from functional group sampling highlight differences in functional group composition among prairie quality classes. High-quality prairies are characterized by greater abundance of sedges and hemi-parasites while lower-quality prairies were affiliated more with non-native perennial forbs and annual/biennial species.  相似文献   

5.
E. G. Towne 《Oecologia》2000,122(2):232-239
The impact of large ungulate carcasses on grassland dynamics was investigated by monitoring vegetation and soil nutrients in 50-cm circular zones around the center of bison (Bos bison), cattle (B. taurus), and deer (Odocoileus virginianus) carcasses. An ungulate carcass creates an intense localized disturbance that varies with animal size and the season of death. Unlike other natural disturbances, carcasses deposit a concentrated pulse of nutrients into the soil. One year after death, inorganic nitrogen concentrations were significantly higher in the inner 50 cm at both adult and juvenile carcass sites than in surrounding prairie. Areas around a carcass became zones of fertility that favored different components of the vegetation and stimulated biomass production. Species richness and diversity at the center of carcass sites were lowest 1 year after death, but increased significantly in subsequent years. However, warm-season perennial grasses declined near the center of carcass sites and did not recover. Five years after death, ungulate carcass sites remained disturbed patches that harbored vegetation characteristically different in composition and stature from surrounding prairie. By providing a niche for species not normally found in undisturbed prairie, carcasses increased community heterogeneity and may play an important role in adding spatial complexity to grassland ecosytems. Received: 12 April 1999 / Accepted: 7 September 1999  相似文献   

6.
Annual brome grasses, Bromus japonicus and B. tectorum, are common invaders of northern mixed-grass prairie, and have been shown to alter the structure and function of prairie ecosystems, including plant biomass production and litter decomposition. To build on previous findings, our objective was to model the impact of annual brome grasses on soil organic carbon storage as a step towards forecasting ecological change. Specifically, we measured differences in carbon storage between patches dominated by annual bromes and perennial grasses, in addition to evaluating key plant functional characteristics that impact carbon storage. Using the CENTURY model, we simulated high- and low-brome vegetation based on differences in functional characteristics, allowing us to extrapolate the findings from the field study across a broader time scale. We sampled a prairie site in 1996 and 1997 to quantify differences between the high- and low-brome cover plots. High-brome plots averaged 40% brome cover, while the low-brome plots averaged 1% brome cover. We found differences in functional attributes for growth characteristics and litter quality, as well as minor differences in edaphic variables between the plots. Based on field measurements, more soil organic carbon was stored under high-brome vegetation than low-brome, but the differences were not statistically significant. Results from model simulations were consistent with field measurements, and suggested that this prairie ecosystem was not significantly impacted by the functional differences between high- and low-brome vegetation for the first 50 years after the brome invasion under historical management and climate. However, the model results also showed that the differences in soil organic carbon storage continue to diverge after 50 years and consequently could be significant in the future.  相似文献   

7.
The spatial arrangement of perennial vegetation is critical for ecosystem function in drylands. While much is known about how vegetation patches respond to grazing and abiotic conditions, the size dynamics of individual plants is mostly limited to theoretical studies. We measured the size distribution (mean, variance, skewness) and density of individual grasses, and grass species composition at 451 sites spanning a range of grazing intensities across three broad vegetation communities in semi-arid eastern Australia. We assessed the relative role of grazing by livestock (cattle and sheep), native (kangaroos) and introduced (rabbits) free ranging herbivores, and several environmental measures (productivity, diversity, composition and groundstorey plant cover) on the size distribution and density of individual grasses. We found mean grass size and density were more sensitive to shifts in grazing intensity and environmental conditions than size variance or the frequency of the smallest individuals (skewness), and shifts were mostly driven by site productivity and cattle and kangaroo grazing. Sheep grazing only reduced mean grass size, and rabbit grazing had no consistent effects. Importantly, we found that site productivity and species composition altered the impacts of grazing on grass density and size distribution. For example, increasing cattle grazing led to larger grasses in low productivity sites. It also led to larger, denser, more variable-sized grasses among grass species from sites with finer soil texture. Increasing kangaroo grazing led to smaller, denser individuals among grass species from sites with coarse soil texture. At high diversity sites kangaroo grazing led to denser, more homogenised grass sizes with a lower frequency of small individuals. Understanding the in situ response of individual plant sizes gives us insights into the processes driving shifts in perennial vegetation patchiness, improving our ability to predict how the spatial arrangement of ecosystems might change under global change scenarios.  相似文献   

8.
Due to their confinement to specific hostplants or restricted habitat types, Auchenorrhyncha have the potential to make suitable biological indicators to measure the quality of chalk grassland under different management practices for nature conservation. The Auchenorrhyncha data from a study designed to identify the factors influencing the invertebrate diversity of chalk grasslands in southern England was used to evaluate the potential use of this group of insects as biological indicators. Between 1998 and 2002 altogether 81 chalk grassland sites were sampled. Vegetation structure and composition were recorded, and Auchenorrhyncha were sampled at each site on three occasions in each of two seasons using a ‘Vortis’ suction sampler. Auchenorrhyncha assemblages were then linked to the different grassland plant communities occurring on chalk soils according to the British National Vegetation Classification (NVC). Altogether 96 Auchenorrhyncha species were recorded during the study. Using data on the frequency and dominance of species, as is commonly done for plant communities, it was possible to identify the preferential and differential species of distinct Auchenorrhyncha assemblages. Significant differences between the Auchenorrhyncha assemblages associated with the various chalk grassland plant communities of the NVC were observed down to a level of sub-communities. We conclude that data on Auchenorrhyncha assemblages can provide valuable information for the setting of conservation management priorities, where data on floristic composition alone may not be sufficient, providing additional information on aspects of vegetation structure and condition.  相似文献   

9.
Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double-edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned-unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central-western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.  相似文献   

10.
11.
Historically, diversity in a community was often believed to result primarily from local processes, but recent evidence suggests that regional diversity may strongly influence local diversity as well. We used experimental and observational vegetation data from Konza Prairie, Kansas, USA, to determine if: (1) there is a relationship between local and regional richness in tallgrass prairie vegetation; (2) local dominance reduces local species richness; and (3) reducing local dominance increases local and regional species richness. We found a positive relationship between regional and local richness; however, this relationship varied with grazing, topography and fire frequency. The decline in variance explained in the grazed vegetation, in particular, suggested that local processes associated with grazing pressure on the dominant grasses strongly influenced local species richness. Experimental removal of one of the dominant grasses, Andropogon scoparius , from replicate plots resulted in a significant increase in local species richness compared to adjacent reference plots. Overall all sites, species richness was higher in grazed (192 spp.) compared to ungrazed (158 spp.) areas. Across the Konza Prairie landscape, however, there were no significant differences in the frequency distribution of species occurrences, or in the relationship between the number of sites occupied and average abundance in grazed compared to ungrazed areas. Thus, local processes strongly influenced local richness in this tallgrass prairie, but local processes did not produce different landscape-scale patterns in species distribution and abundance. Because richness was enhanced at all spatial scales by reducing the abundance of dominant species, we suggest that species richness in tallgrass prairie results from feedbacks between, and interactions among, processes operating at multiple scales in space and time.  相似文献   

12.
Four hypotheses were tested using long-term observations of vegetation development (12 years) and present-day seed bank data in a sandy grassland area overgrazed by domestic geese: i) Gap regeneration is crucial in maintaining species richness; thus, closed vegetation of the lower sites prevents continuous establishment of short-lived species. ii) Short-lived, early successional species comprise most of the seed banks and late successional perennials have at most sparse seed banks. iii) Composition of seed banks is more similar to pioneer vegetation than to later successional stages. iv) The similarity is higher between vegetation and seed banks in the upper-positioned plots than in the closed, lower-positioned ones. Two sites, located in the upper part of dune slopes, and another two, positioned on the lower part, were studied. In each site five 2?×?2 m permanent plots were surveyed between 1991 and 2002. Percentage cover was estimated three times a year. In the last study year, soil seed banks were sampled. Two vertical segments (0–5, 5–10 cm) were separately analyzed. The seedling emergence method was applied on concentrated samples. We found that the vegetation developed from open, annual dominated weedy assemblages to grasslands dominated by perennial graminoids. In the lower-positioned sites perennial clonal grasses (Cynodon dactylon, Poa angustifolia and P. pratensis) formed more closed vegetation, which was accompanied by lower species richness compared to the upper-positioned sites. Seed density varied between 10,300 and 40,900 seeds/m2. Significantly higher seed densities were found in upper sites than in the lower ones. Annuals and short-lived perennial dicots comprised most of the seed bank. The dominant perennial graminoids also built up dense seed banks. We found a low to medium similarity between vegetation and the seed bank; similarity was the highest with the vegetation of the 1994–1998 period. In the upper sites the similarity between seed bank and the vegetation of the last studied years was also high. The vertical position had a significant effect on regeneration after overgrazing. The large cover of grasses in lower sites decreased species richness and it also decreased the seed density preventing the seed bank formation of annuals and short-lived perennials. Here, further management practices are needed to increase the species richness.  相似文献   

13.
We studied two tallgrass prairies and adjacent restoration areas in northeast Kansas to analyze (1) the invasion of native tallgrass prairie species from native prairie source populations into replanted areas; (2) the establishment of planted prairie species five and 35 years after being sown; and (3) the effects of native prairie species on soil organic matter. For the majority of dominant species, composition differed statistically between sampled areas even though seed rain was available from the native tallgrass prairie remnants. Plant community differences were statistically different between each native prairie area and all respective restoration sites according to the Multiple Response Permutation Procedure. In addition, species richness was greatly reduced in replanted areas compared to adjacent native prairie remnants. Soil carbon isotope ratios indicated that the planting of warm-season grasses resulted in substantial replacement of old soil organic matter by the newly replanted grasses but that it did not create substantial increases of soil organic matter beyond replacement. The lack of accumulation reflects a nutrient-poor system (nitrogen-poor in particular), and the relative absence of native or introduced nitrogen-fixing plant species on the replanted areas may be a significant factor. It appears that restoration of the original highly diverse vegetation component of the tallgrass prairie ecosystem, even when aided by seeding and an adjacent prairie seed source, will occur on carbon- and nitrogen-depleted soils only over very long periods of time (perhaps centuries), if at all.  相似文献   

14.
Perennial bioenergy crops accumulate carbon (C) in soils through minimally disturbing management practices and large root inputs, but the mechanisms of microbial control over C dynamics under bioenergy crops have not been clarified. Root‐derived C inputs affect both soil microbial contribution to and degradation of soil organic matter resulting in differing soil organic carbon (SOC) concentrations, storage, and stabilities under different vegetation regimes. Here, we measured biomarker amino sugars and neutral sugars and used diffuse reflectance mid‐infrared Fourier transform spectroscopy (DRIFTS) to explore microbial C contributions, degradation ability, and SOC stability, respectively, under four potential bioenergy crops, Mgiganteus (Miscanthus × giganteus), switchgrass (Panicum virgatum L.), a mixed prairie, and a maize (Zea mays L.)–maize–soybean (Glycine max(L.) Merr.) (MMS) rotation over six growing seasons. Our results showed that SOC concentration (g/kg) increased by 10.6% in mixed prairie over the duration of this experiment and SOC storage (Mg/ha) increased by 17.0% and 15.6% in switchgrass and mixed prairie, respectively. Conversion of row crops to perennial grasses maintained SOC stability and increased bacterial residue contribution to SOC in Mgiganteus and switchgrass by 20.0% and 15.0%, respectively, after 6 years. Degradation of microbe‐derived labile SOC was increased in Mgiganteus, and degradation of both labile and stable SOC increased in MMS rotation. These results demonstrate that microbial communities under perennial grasses maintained SOC quality, while SOC quantity increased under switchgrass and mixed prairie. Annual MMS rotation displayed decreases in aspects of SOC quality without changes in SOC quantity. These findings have implications for understanding microbial control over soil C quantity and quality under land‐use shift from annual to perennial bioenergy cropping systems.  相似文献   

15.
Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte   总被引:2,自引:0,他引:2  
Our objective was to assess the relationship between the spatial patterning of perennial grasses (total, grazed, and non‐grazed) and shrub patches in rangelands under different grazing pressures of the Patagonian Monte. We selected three grazed paddocks with the usual stocking rate for the area, where previous studies showed that a piosphere formation is common. At each paddock, we analysed the grain of heterogeneity at sites located at two distances from the single watering point (near, far), using high‐resolution aerial photographs. At these sites, we also assessed in the field the density, size, cover, and spatial patterning of grazed and non‐grazed perennial grasses and shrub patches. The grain of heterogeneity of shrub patches was coarser in sites near the watering point than in those distant from it, as a consequence of the increase in size of both, bare soil and shrub patches. Field sampling showed that a coarse grain of heterogeneity relative to fine‐grained sites resulted from changes in species composition, increased bare soil areas and reduced perennial grass cover. In coarse‐grained sites, lower perennial grass cover resulted from lower density and/or smaller size of grass bunches than in fine‐grained sites. We did not find significant differences among sites in the proportion of perennial grazed grasses. Since the density and cover of perennial grasses was higher in fine‐ than in coarse‐grained sites, we suggested that fine‐grained sites are more important as feeding stations than coarse‐grained sites. The consequences of this differential use could lead to degradation of fine‐grained sites and to higher homogeneity in spatial plant structure and floristic composition within paddocks with respect to the condition observed at present, increasing the size of the highly degraded zone within the piosphere. At the patch level, we found that at about one third of the sampled transects, both total and non‐grazed perennial grasses were spatially aggregated with shrub patches. However, in most transects grazed perennial grasses were indifferently distributed in relation with shrub patches, showing that grazers display high selectivity of foraging sites at macro level (i.e. high and low grazing pressure sites at the paddock level), but random occupancy of vegetation units (randomness in the distribution of grazed perennial grasses at the patch level). The intensity of the positive association between non‐grazed grasses and shrub patches was higher in fine‐grained than in coarse‐grained sites and may be attributed to higher protection against herbivores associated to denser shrub patches in fine‐ relative to coarse‐grained sites. We concluded that a feedback exists between the spatial distribution of species preferred by grazers and the spatial patterning of use of these species.  相似文献   

16.
Effects of fire and small-scale soil disturbances on species richness, community heterogeneity, and microsuccession were investigated in a central Oklahoma tallgrass prairie. In the fall of 1985, 0.2 m2 soil disturbances were created on burned and unburned tallgrass prairie. Vegetation on and off disturbances was sampled at monthly intervals over two growing seasons. During the first growing season, the cover of forbs and annuals, and species richness were significantly greater on versus off disturbances, but these differences did not persist through the second year. The variation in species composition among disturbed plots (heterogeneity) was significantly greater compared to undisturbed areas throughout the study. Fire had no consistent effect on richness and heterogeneity of vegetation on soil disturbances but fire reduced heterogeneity on undisturbed vegetation. Rate of succession, based on an increase in cumulative cover of perennial grasses over time, did not differ among treatments during the first growing season. During the second year, rate of succession was significantly greater on burned soil disturbances compared to unburned soil disturbances. These results suggest that while small-scale soil disturbances have primarily short-lived effects on grassland community structure, disturbances do help to maintain spatial and temporal variation in tallgrass prairie communities. Unlike in undisturbed vegetation, however, species richness and heterogeneity on soil disturbances were little effected by fire, but the rate of colonization onto disturbances appeared to be enhanced by fire.  相似文献   

17.
Effects of fire on growth and reproduction of the perennial forb Ratibida columnifera were studied on the Konza Prairie Research Natural Area in northeastern Kansas, USA. Populations were sampled in seven different tallgrass prairie watersheds that varied in fire frequency and in the number of years elapsed since the last fire. Plants from sites not burned for many years were 2.6 times larger and produced 50% more stems than plants from recently burned sites. Number of seeds per plant was also higher in long-unburned sites due to greater numbers of flower heads per plant and greater numbers of achenes produced per head. Reproductive effort (ratio of inflorescence biomass to total vegetative biomass) was 33% lower in annually burned prairie than in any of the other sites. Significant differences in the relationships of inflorescence biomass to vegetative plant biomass in burned vs. unburned sites indicated that burning causes direct changes in plant reproductive effort independent from its effects on plant size. There was no clear relationship between patterns of seed production among sites and patterns of R. columnifera abundance. Ratibida columnifera responses to fire are most likely a result of changes in the relative competitive abilities of forbs and the dominant perennial grasses due to post-fire changes in abiotic conditions rather than a result of direct effects of fire on the fate of buds and subsequent vegetative and floral development.  相似文献   

18.
We examined the long-term success of prairie planting on a former strip mine in northeastern Illinois. The site was reclaimed and planted with prairie species in the 1970s. Total biomass increased over time, largely as a result of an increase in biomass of non-prairie species. Biomass of prairie species remained unchanged because of an increase in Panicum virgatum (switchgrass) offsetting decreases in Sorghastrum nutans (Indian grass). Total biomass was less than values published for other restored prairies (78 ± 4 g/m2to 298 ± 72 g/m2 for our site, as opposed to 302-489 g/m2 for the Trelease Prairie). Mycorrhizal inoculum potential (MIP) was variable across the site. There were also relatively few species of mycorrhizal fungi present as spores. Gigaspora sp., Scutellospora sp., Glomus sp., Glomus geosporum, and Glomus cf. fasciculatum were identified from spores. On a transect dominated by warm-season (C4) prairie grasses, MIP of rhizosphere soil collected under these species was lower than the MIP of rhizosphere soil collected under exotic cool-season (C3) grasses on a transect dominated by C3 species. On a transect with mixed warm-and cool-season vegetation, however, MIP did not differ under the two vegetation types. These results suggest that within-site patchiness rather than cover type is influencing MIP. Values of MIP were lower than those reported for native Illinois prairie.  相似文献   

19.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

20.
Natural small, xeric hill prairies in forested landscapes throughout the Midwest United States often contain high diversity and unique species of some organisms because of their unusual landscape context and microclimate. We measured the diversity, richness, and abundance of the bee communities of five hill prairies located in northeastern Iowa and we compared these to values for large prairie preserves in northwestern Iowa, using a Monte Carlo resampling approach to standardize sampling effort between habitat types. We also measured the diversity and richness of the flowering forb communities at the hill prairies and we quantified percentage of the landscape at a 1 km radius in different landscape elements. Bee diversity at the five hill prairies spanned the range of diversity values for large prairies preserves, so although the hill prairies are small (<5 ha), their bee communities are not uniformly depauparate compared to larger western prairie preserves. Bee diversity was significantly related to flowering forb diversity, and may have been influenced by landscape features within 1 km—particularly the percentage of agricultural row crops and open water, which may negatively affect bee diversity at the sites. Iowa’s hill prairie bee communities were largely composed of widespread eastern species, although about 10% of the bee species have more northern or western ranges and appear to be taking advantage of the region’s unique habitat features. Given the dependence of the bee communities on the plant diversity of the sites, management of the plant community to maintain its diversity will also likely benefit bee diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号