首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Allergenic serine proteases are important in the pathogenesis of asthma. One of these, Pen c 13, is the immunodominant allergen produced by Penicillium citrinum. Many serine proteases induce cytokine expression, but whether Pen c 13 does so in human respiratory epithelial cells is not known. In this study, we investigated whether Pen c 13 caused IL-8 release and activated protease-activated receptors (PARs) in airway epithelial cells. In airway-derived A549 cells and normal human airway epithelial cells, Pen c 13 induced IL-8 release in a dose-dependent manner. Pen c 13 also increased IL-8 release in a time-dependent manner in A549 cells. Pen c 13 cleaved PAR-1 and PAR-2 at their activation sites. Treatment with Pen c 13 induced intracellular Ca(2+) mobilization and desensitized the cells to the action of other proteases and PAR-1 and PAR-2 agonists. Moreover, Pen c 13-mediated IL-8 release was significantly decreased in Ca(2+)-free medium and was abolished by the protease inhibitors, PMSF and 4-(2-aminoethyl) benzenesulfonyl fluoride. Blocking Abs against the cleavage sites of PAR-1 and PAR-2, but not of PAR-4, inhibited Pen c 13-induced IL-8 production, as did inhibition of phospholipase C. Pen c 13 induced IL-8 expression via activation of ERK 1/2, and not of p38 and JNK. In addition, treatment of A549 cells or normal human airway epithelial cells with Pen c 13 increased phosphorylation of ERK 1/2 by a Ca(2+)-dependent pathway. These finding show that Pen c 13 induces IL-8 release in airway epithelial cells and that this is dependent on PAR-1 and PAR-2 activation and intracellular calcium.  相似文献   

3.
Increased eosinophil counts are a major feature of asthmatic airways. Eosinophil recruitment requires migration through epithelium and tissue extracellular matrix by activation of proteases. We assessed the capacity of IL-16, a CD4(+) cell chemotactic factor, to induce migration of eosinophils through a reconstituted basement membrane and evaluated the proteases, mediators, and receptors involved in this migration. IL-16 added to lower chambers of Invasion Chambers elicited eosinophil migration through Matrigel. This effect was decreased by inhibition of the plasminogen-plasmin system (Abs against urokinase plasminogen activator receptor or plasminogen depletion), but not by anti-matrix metalloproteinase-9 Abs. Abs against CD4 also inhibited IL-16-induced eosinophil migration. At the baseline level, few eosinophils (4.6% positive cells with a mean fluorescence of 0.9) expressed surface membrane CD4, while most permeabilized eosinophils (68% positive cells with a mean fluorescence of 18) express the CD4 Ag. TNF-pretreatment increased surface membrane CD4(+) expression by 6-fold as previously described, and increased IL-16-induced cell migration by 2.2-fold. Incubation of eosinophils with IL-16 also increased surface membrane CD4 expression by 5.4-fold, supporting the role of CD4 as receptor for IL-16. Abs against CCR3, eotaxin, or RANTES blocked IL-16-induced migration. In conclusion, IL-16 promotes eosinophil migration in vitro, by activating the plasminogen-plasmin system and increasing the membrane expression of its receptor. This effect is initiated via CD4 and mediated via the release of CCR3 ligand chemokines. Interestingly, most eosinophils express intracellular CD4. Hence, IL-16 may play an important role in the recruitment of blood eosinophils to the bronchial mucosa of asthmatics.  相似文献   

4.
5.
We have previously shown that mast cells enhance eosinophil survival and activation. In this study we further characterized mast cell activity toward eosinophils. Sonicate of both rat peritoneal mast cells and the human mast cell line 1 (HMC-1) induced a concentration-dependent IL-6 and IL-8 release from human peripheral blood eosinophils (ELISA). HMC-1-induced IL-8 release was significantly reduced by the tryptase inhibitors GW-45 and GW-58 (90 and 87%, respectively, at an optimal concentration) but not by anti-stem cell factor, anti-TNF-alpha, or anti-IFN-gamma neutralizing Abs or by the antihistamine drugs pyrilamine and cimetidine. In a manner similar to HMC-1, human recombinant tryptase induced the expression of mRNA for IL-8 (RT-PCR) and caused IL-8 release from the eosinophils. Addition of cycloheximide, actinomycin D, dexamethasone, PD 98059, curcumin, or SB 202190 completely inhibited the tryptase-induced IL-6 and IL-8 release. In contrast, cyclosporin A had no effect on tryptase-induced IL-8 release. Tryptase caused phosphorylation of extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinases 1 and 2, and p38 (Western blot). Tryptase also induced the translocation of c-Jun from the cytosol to the nucleus (confocal microscopy) and enhanced AP-1 binding activity to the DNA (EMSA). Eosinophils were found to express proteinase-activated receptor 2 (FACS). When eosinophils were incubated with tryptase in the presence of anti-proteinase-activated receptor 2 antagonist Abs a significant decrease in the IL-6 and IL-8 release occurred. In summary, we have demonstrated that the preformed mast cell mediator tryptase induces cytokine production and release in human peripheral blood eosinophils by the mitogen-activated protein kinase/AP-1 pathway.  相似文献   

6.
Evidence in the literature implicating both Ras-like Ras (R-Ras) and intracellular Ca(2+) in programmed cell death and integrin-mediated adhesion prompted us to investigate the possibility that R-Ras alters cellular Ca(2+) handling. Chinese hamster ovary cells expressing the cholecystokinin (CCK)-A receptor were loaded with indo-1 to study the effects of constitutively active V38R-Ras and dominant negative N43R-Ras on the kinetics of the thapsigargin (Tg)- and CCK(8)-induced Ca(2+) rises using high speed confocal microscopy. In the absence of extracellular Ca(2+), both 1 microm Tg, a potent and selective inhibitor of the Ca(2+) pump of the intracellular Ca(2+) store, and 100 nm CCK(8) evoked a transient rise in Ca(2+), the size of which was decreased significantly after expression of V38R-Ras. At 0.1 nm, CCK(8) evoked periodic Ca(2+) rises. The frequency of these Ca(2+) oscillations was reduced significantly in V38R-Ras-expressing cells. In contrast to V38R-Ras, N43R-Ras did not alter the kinetics of the Tg- and CCK(8)-induced Ca(2+) rises. The present findings are compatible with the idea that V38R-Ras expression increases the passive leak of Ca(2+) of the store leading to a decrease in Ca(2+) content of this store, which, in turn, leads to a decrease in frequency of the CCK(8)-induced cytosolic Ca(2+) oscillations. The effect of V38R-Ras on the Ca(2+) content of the intracellular Ca(2+) store closely resembles that of the antiapoptotic protein Bcl-2 observed earlier. Together with reports on the role of dynamic Ca(2+) changes in integrin-mediated adhesion, this leads us to propose that the reduction in endoplasmic reticulum Ca(2+) content may underlie the antiapoptotic effect of R-Ras, whereas the decrease in frequency of stimulus-induced Ca(2+) oscillations may play a role in the inhibitory effect of R-Ras on stimulus-induced cell detachment and migration.  相似文献   

7.
Capacitative Ca(2+) entry is essential for refilling intracellular Ca(2+) stores and is thought to be regulated primarily by inositol 1, 4,5-trisphosphate (IP(3))-sensitive stores in nonexcitable cells. In nonexcitable A549 cells, the application of caffeine or ryanodine induces Ca(2+) release in the absence of extracellular Ca(2+) similar to that induced by thapsigargin (Tg), and Ca(2+) entry occurs upon the readdition of extracellular Ca(2+). The channels thus activated are also permeable to Mn(2+). The channels responsible for this effect appear to be activated by the depletion of caffeine/ryanodine-sensitive stores per se, as evidenced by the activation even in the absence of increased intracellular Ca(2+) concentration. Tg pretreatment abrogates the response to caffeine/ryanodine, whereas Tg application subsequent to caffeine/ryanodine treatment induces further Ca(2+) release. The response to caffeine/ryanodine is also abolished by initial ATP application, whereas ATP added subsequent to caffeine/ryanodine induces additional Ca(2+) release. RT-PCR analyses showed the expression of a type 1 ryanodine receptor, two human homologues of transient receptor potential protein (hTrp1 and hTrp6), as well as all three types of the IP(3) receptor. These results suggest that in A549 cells, (i) capacitative Ca(2+) entry can also be regulated by caffeine/ryanodine-sensitive stores, and (ii) the RyR-gated stores interact functionally with those sensitive to IP(3), probably via Ca(2+)-induced Ca(2+) release.  相似文献   

8.
Elevation of extracellular Ca(2+) concentration induces intracellular Ca(2+) signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca(2+) pathways, but the direct mechanism responsible for the rise of intracellular Ca(2+) concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca(2+) signaling in frog parathyroid cells and show that Ca(2+)-activated Cl(-) channels are activated by intracellular Ca(2+) increase through an inositol 1,4,5-trisphophate (IP(3))-independent pathway. High extracellular Ca(2+) induced an outwardly-rectifying conductance in a dose-dependent manner (EC(50) ~6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca(2+)-induced and Ca(2+) dialysis-induced currents reversed at the equilibrium potential of Cl(-) and were inhibited by niflumic acid (a specific blocker of Ca(2+)-activated Cl(-) channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca(2+)-induced current, suggesting the change of intracellular Cl(-) concentration in a few minutes. Extracellular Ca(2+)-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca(2+)-induced current. IP(3) dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca(2+)-induced conductance. These results indicate that high extracellular Ca(2+) raises intracellular Ca(2+) concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl(-) conductance.  相似文献   

9.
10.
Although much progress has been made in understanding the molecular mechanisms underlying agonist-induced "inside-out" activation of integrins, little is known about how basal levels of integrin function are maintained. This is particularly important for nonactivated eosinophils, where intermediate activation of alpha(4)beta(1) integrin supports recruitment to endothelial cells under flow conditions. Depletion of intracellular Ca(2+) and pharmacological inhibition of phospholipase C (but not other intracellular signaling molecules, including PI3K, ERK1/2, p38 MAPK, and tyrosine kinase activity) abrogated basal alpha(4) integrin activity in nonactivated eosinophils. Basal alpha(4) integrin activation was associated with activation of the small GTPase Rap1, a known regulator of agonist-induced integrin function. Basal Rap activation was dependent upon phospholipase C, but not intracellular Ca(2+). However, depletion of intracellular Ca(2+) in CD34(+) hematopoietic progenitor cells abolished RapV12-mediated induction of alpha(4) integrin activity. Thus, residual Rap activity or constitutively active Rap activity in Ca(2+)-depleted cells is not sufficient to induce alpha(4) integrin activation. These data suggest that activation of functional alpha(4) integrin activity in resting eosinophils is mediated by Rap1 provided that the intracellular-free Ca(2+) is at a normal homeostatic concentration.  相似文献   

11.
The hypothesis was tested that different chemoattractants have different effects on the activity of integrins expressed by the human eosinophil. Three chemoattractants, CXCL8 (IL-8), CCL11 (eotaxin-1), and C5a were tested with respect to their ability to induce migration and the transition of eosinophils from a rolling interaction to a firm arrest on activated endothelial cells under flow conditions. CCL11 and C5a induced a firm arrest of eosinophils rolling on an endothelial surface, whereas CXCL8 induced only a transient arrest of the cells. The CXCL8- and CCL11-induced arrest was inhibited by simultaneously blocking alpha4 integrins (HP2/1) and beta2 integrins (IB4). In contrast, the C5a-induced arrest was only inhibited by 30% under these conditions. The potency differences of C5a>CCL11>CXCL8 to induce firm adhesion under flow condition was also observed in migration assays and for the activation of the small GTPase Rap-1, which is an important signaling molecule in the inside-out regulation of integrins. Interestingly, only C5a was able to induce the high activation epitope of alphaMbeta2 integrin recognized by MoAb CBRM1/5. The C5a-induced appearance of this epitope and Rap activation was controlled by phospholipase C (PLC), as was shown with the PLC inhibitor U73122. These data show that different chemoattractants are able to induce distinct activation states of integrins on eosinophils and that optimal chemotaxis is associated with the high activation epitope of the alphaMbeta2 integrin. Furthermore, PLC plays an important role in the inside-out signaling and, thus, the activation status of integrins on eosinophils.  相似文献   

12.
Endothelin-1 (ET-1) increases intracellular Ca(2+) concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs); however, the mechanisms for Ca(2+) mobilization are not clear. We determined the contributions of extracellular influx and intracellular release to the ET-1-induced Ca(2+) response using Indo 1 fluorescence and electrophysiological techniques. Application of ET-1 (10(-10) to 10(-8) M) to transiently (24-48 h) cultured rat PASMCs caused concentration-dependent increases in [Ca(2+)](i). At 10(-8) M, ET-1 caused a large, transient increase in [Ca(2+)](i) (>1 microM) followed by a sustained elevation in [Ca(2+)](i) (<200 nM). The ET-1-induced increase in [Ca(2+)](i) was attenuated (<80%) by extracellular Ca(2+) removal; by verapamil, a voltage-gated Ca(2+)-channel antagonist; and by ryanodine, an inhibitor of Ca(2+) release from caffeine-sensitive stores. Depleting intracellular stores with thapsigargin abolished the peak in [Ca(2+)](i), but the sustained phase was unaffected. Simultaneously measuring membrane potential and [Ca(2+)](i) indicated that depolarization preceded the rise in [Ca(2+)](i). These results suggest that ET-1 initiates depolarization in PASMCs, leading to Ca(2+) influx through voltage-gated Ca(2+) channels and Ca(2+) release from ryanodine- and inositol 1,4,5-trisphosphate-sensitive stores.  相似文献   

13.
Hashido M  Hayashi K  Hirose K  Iino M 《EMBO reports》2006,7(11):1117-1123
Cells communicate with each other to form organized structures by cell-cell adhesion and cell-cell repulsion, but it remains to be clarified how cell-cell contact information is converted into intracellular signals. Here, we show that cells in contact with neighbouring cells generate local transient intracellular Ca(2+) signals (Ca(2+) lightning). Ca(2+) lightning was observed near cell-cell contact regions and was not observed in the central regions of cells or in solitary cells that were not in contact with other cells. We also show that Ca(2+) lightning is able to regulate cell-cell repulsion by means of PYK2, a Ca(2+)-activated protein tyrosine kinase, which induces focal adhesion disassembly in a Ca(2+)-dependent manner. These results show that cell-cell contact information might be transmitted by Ca(2+) lightning to regulate intracellular events.  相似文献   

14.
15.
Calcium is an important regulator of mitochondrial function. Since there can be tight coupling between inositol 1,4, 5-trisphosphate-sensitive Ca(2+) release and elevation of mitochondrial calcium concentration, we have investigated whether a similar relationship exists between the release of Ca(2+) from the ryanodine receptor and the elevation of mitochondrial Ca(2+). Perfusion of permeabilized A10 cells with inositol 1,4, 5-trisphosphate resulted in a large transient elevation of mitochondrial Ca(2+) to about 8 microm. The response was inhibited by heparin but not ryanodine. Perfusion of the cells with Ca(2+) buffers in excess of 1 microm leads to large increases in mitochondrial Ca(2+) that are much greater than the perfused Ca(2+). These increases, which average around 10 microm, are enhanced by caffeine and inhibited by ryanodine and depletion of the intracellular stores with either orthovanadate or thapsigargin. We conclude that Ca(2+)-induced Ca(2+) release at the ryanodine receptor generates microdomains of elevated Ca(2+) that are sensed by adjacent mitochondria. In addition to ryanodine-sensitive stores acting as a source of Ca(2+), Ca(2+)-induced Ca(2+) release is required to generate efficient elevation of mitochondrial Ca(2+).  相似文献   

16.
In vivo chronic metabolic acidosis induces net Ca2+ efflux from bone, and incubation of neonatal mouse calvariae in medium simulating physiological metabolic acidosis induces bone resorption. It appears that activation of the proton (H+) receptor OGR1 in the osteoblast leads to an increase in intracellular Ca2+, which is associated with an increase in cyclooxygenase 2 (COX2) and PGE2-induced receptor activator of NF-κB ligand (RANKL) and H+-induced osteoclastic bone resorption. To support this hypothesis, we tested whether intracellular Ca2+ signaling was integral to H+-induced bone resorption by determining whether 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8) and 2-aminoethoxydiphenyl borate (2-APB), inhibitors of inositol trisphosphate-mediated Ca2+ signaling, would block H+-induced bone resorption in cultured neonatal calvariae and, if so, would do so by inhibiting H+-induced stimulation of COX2 and RANKL in osteoblastic cells. We found that H+-induced bone resorption is significantly inhibited by TMB-8 and 2-APB. Both compounds also inhibit H+-induced stimulation of COX2 protein in calvariae and COX2 mRNA and protein levels in primary osteoblasts. H+-induced stimulation of RANKL in calvarial cultures, as well as primary cells, is also completely inhibited by TMB-8 and 2-APB. These results support the hypothesis that H+ stimulation of net Ca2+ efflux from bone, mediated by COX2- and subsequent PGE2-induced RANKL production, is initiated in the osteoblast via activation of Ca2+ signaling.  相似文献   

17.
18.
The endozepine triakontatetraneuropeptide (TTN) induces intracellular calcium ([Ca(2+)](i)) changes and is chemotactic for human neutrophils (PMNs). Because interleukin-8 (IL-8) production is Ca(2+) dependent and can be induced by chemotactic stimuli, we have investigated the ability of TTN to induce IL-8 production in PMNs, as well as the signal transduction mechanisms involved. Our results show that TTN increases IL-8 release and IL-8 mRNA expression in a concentration- and time-dependent fashion, and these effects are prevented by the Ca(2+) chelator BAPTA-AM. TTN-induced [Ca(2+)](i) changes and IL-8 mRNA expression are sensitive to pertussis toxin, to the phospholipase C (PLC) inhibitor U73122 (but not to its inactive analogue U73343) and to the protein kinase C (PKC) inhibitor calphostin C. It is therefore suggested that TTN-induced IL-8 production in human PMNs results from a G protein-operated, PLC-activated [Ca(2+)](i) rise, and PKC contributes to this effect. These findings further support the possible role of TTN in the modulation of the inflammatory processes.  相似文献   

19.
Jeong HJ  Han NR  Moon PD  Kim MH  Kim HM 《Cytokine》2011,53(2):153-157
Interleukin (IL)-32 has been associated with inflammation, apoptosis, and chemokine induction. The intracellular Ca(2+) concentration of mammalian endolymph in the inner ear is required for normal hearing and balance. Here, we document for the first time that IL-32 highly increased intracellular calcium level and IL-1β expression in an auditory cell line, HEI-OC1 cells. Treatment with 1, 2-bis (2-aminophenoxy) ethane-N, N, N', N'-tetraacetic acid acetoxymethyl ester, a chelator of intracellular calcium, inhibited IL-32-induced IL-1 β production and caspase-1 activation. Thus, IL-32 may contribute to modulation of the inflammatory reaction through the regulation of intracellular Ca(2+) in the inner ear.  相似文献   

20.
Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway   总被引:6,自引:0,他引:6  
Galectin-9 (Gal-9) induced the apoptosis of not only T cell lines but also of other types of cell lines in a dose- and time-dependent manner. The apoptosis was suppressed by lactose, but not by sucrose, indicating that beta-galactoside binding is essential for Gal-9-induced apoptosis. Moreover, Gal-9 required at least 60 min of Gal-9 binding and possibly de novo protein synthesis to mediate the apoptosis. We also assessed the apoptosis of peripheral blood T cells by Gal-9. Apoptosis was induced in both activated CD4(+) and CD8(+) T cells, but the former were more susceptible than the latter. A pan-caspase inhibitor (Z-VAD-FMK) inhibited Gal-9-induced apoptosis. Furthermore, a caspase-1 inhibitor (Z-YVAD-FMK), but not others such as Z-IETD-FMK (caspase-8 inhibitor), Z-LEHD-FMK (caspase-9 inhibitor), and Z-AEVD-FMK (caspase-10 inhibitor), inhibited Gal-9-induced apoptosis. We also found that a calpain inhibitor (Z-LLY-FMK) suppresses Gal-9-induced apoptosis, that Gal-9 induces calcium (Ca(2+)) influx, and that either the intracellular Ca(2+) chelator BAPTA-AM or an inositol trisphosphate inhibitor 2-aminoethoxydiphenyl borate inhibits Gal-9-induced apoptosis. These results suggest that Gal-9 induces apoptosis via the Ca(2+)-calpain-caspase-1 pathway, and that Gal-9 plays a role in immunomodulation of T cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号