首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A mutant strain of Streptomyces venezuelae was engineered by deletion of the entire gene cluster related to biosynthesis of the endogenous deoxysugar (TDP-D-desosamine) and replacement with genes required for biosynthesis of an intermediate sugar (TDP-4-keto-6-deoxy-D-glucose) or an exogenous sugar (TDP-D-olivose), from the oleandomycin and urdamycin deoxysugar pathways. The 'sugar-flexible' glycosyltransferase (DesVII) was able to attach the intermediate sugar and the new sugar to both 12- and 14-membered macrolactones thus producing quinovose or olivose glycosylated 10-deoxymethynolide and narbonolide, respectively. In addition, hydroxylated analogs of the new metabolites were detected. These results demonstrate a successful attempt of engineering the deoxysugar pathway for generation of novel hybrid macrolide antibiotics.  相似文献   

2.
NovW, novU and novS genes have been characterized as dTDP-4-keto-6-deoxy-D-glucose 3-epimerase, C-5 methyltransferase and dTDP-glucose 4-ketoreductase, respectively involved in noviose biosynthetic pathway. We have cloned and expressed the Streptomyces spheroids novWUS genes in S. venezuelae YJ003-OTBP1. This established the function of novWUS and, at the same time, it also proved that the noviosyl derivative of 10-deoxymethynolide(2)/narbonolide(4) obtained from S. venezuelae YJ003-OTBP1 is a novel hybrid antibiotic.  相似文献   

3.
The pSKC2 cosmid, which has 32 kb and 28 open-reading frames, was isolated from Streptomyces kanamyceticus ATCC12853 as the gene cluster of kanamycin. This gene cluster includes the minimal biosynthetic genes of kanamycin with the resistance and regulatory genes. It was heterologously expressed in Streptomyces venezuelae YJ003, which has the advantage of fast growth, good efficiency of the transformation host, and rapid production of the aminoglycosides antibiotic. The isolated compound was analyzed by electrospray ionization–mass spectrometry, liquid chromatography–mass spectrometry, high-performance liquid chromatography, and tandem mass spectrometry and shows a molecular weight of 485 as kanamycin A.  相似文献   

4.
2-Deoxystreptamine is a core aglycon that is vital to backbone formation in various aminoglycosides. This core structure can be modified to develop hybrid types of aminoglycoside antibiotics. We obtained three genes responsible for 2-deoxystreptamine production, neo7, neo6, and neo5, which encode 2-deoxy-scyllo-inosose synthase, L-glutamine: 2-deoxy-scyllo-inosose aminotransferase, and dehydrogenase, respectively, from the neomycin gene cluster. These genes were cloned into pIBR25, a Streptomyces expression vector, resulting in pNDOS. The recombinant pNDOS was transformed into a non-aminoglycoside-producing host, Streptomyces venezuelae YJ003, for heterologous expression. Based on comparisons of the retention time on LC-ESI/MS and ESIMS data with those of the 2-deoxystreptamine standard, a compound produced by S. venezuelae YJ003/pNDOS was found to be 2-deoxystreptamine.  相似文献   

5.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   

6.
7.
Epothilones, produced from the myxobacterium Sorangium cellulosum, are potential anticancer agents that stabilize microtubules in a similar manner to paclitaxel. The entire epothilone biosynthetic gene cluster was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin polyketide synthase gene cluster. The resulting strains produced approximately 0.1 μg/l of epothilone B as a sole product after 4 days cultivation. Deletion of an epoF encoding the cytochrome P450 epoxidase gave rise to a mutant that selectively produces 0.4 μg/l of epothilone D. To increase the production level of epothilones B and D, an additional copy of the positive regulatory gene pikD was introduced into the chromosome of both S. venezuleae mutant strains. The resulting strains showed enhanced production of corresponding compounds (approximately 2-fold). However, deletion of putative transport genes, orf3 and orf14 in the epothilone D producing S. venezuelae mutant strain, led to an approximately 3-fold reduction in epothilone D production. These results introduce S. venezuelae as an alternative heterologous host for the production of these valuable anticancer agents and demonstrate the possibility of engineering this strain as a generic heterologous host for the production of polyketides and hybrid polyketide-nonribosomal peptides.  相似文献   

8.
利用植物生产异源蛋白的研究进展   总被引:3,自引:0,他引:3  
植物作为生产异源蛋白的生物反应器,近年来颇受关注,与复杂,昂贵的以细胞培养为基础的表达系统相比,具有安全、廉价及规模化生等特点。作者简述了利用植物生产外源蛋白的主要策略及异源基因在植物中表达的研究进展。  相似文献   

9.
10.
In the work, a study of cell growth and the regulation of heterologous glucoamylase synthesis under the control of the positively regulated alcA promoter in a recombinant Aspergillus nidulans is presented. We found that similar growth rates were obtained for both the host and recombinant cells when either glucose or fructose was employed as sole carbon and energy source. Use of the potent inducer cyclopentanone in concentrations greater than 3 mM resulted n maximum glucoamylase concentration and maximum overall specific glucoamylase concentration over 80 h of batch cultivation. However, cyclopentanone concentrations in excess of 3 mM also showed an inhibitory effect on spore germination as well as fungal growth. In contrast, another inducer, threonine, had no negative effect on spore germination even when concentrations of up to 100 mM were used with either glucose or fructose as carbon source. Glucoamylase synthesis in the presence of glucose plus either inducer did not begin until glucose was totally depleted, suggesting strong catabolite repression. Similar results were obtained when fructose was employed, although low levels of glucoamylase were detected before fructose depletion, suggesting partial catabolite repression. The highest enzyme concentration (570 mg/L) and overall specific enzyme concentration (81 mg/g cell) were observed in batch culture when cyclopentanone was the inducer and fructose the primary carbon source. A maximum glucoamylase concentration of 1.1 g/L and an overall specific glucoamylase concentration of 167 mg/g cell were obtained in a bioreactor using cyclopentanone as the inducer and limited-fructose feeding strategy, which nearly doubles the glucoamylase productivity from batch cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
12.
A Cryptococcus flavus gene ( AMY1 ) encoding an extracellular α-amylase has been cloned. The nucleotide sequence of the cDNA revealed an ORF of 1896 bp encoding for a 631 amino acid polypeptide with high sequence identity with a homologous protein isolated from Cryptococcus sp. S-2. The presence of four conserved signature regions, (I) 144DVVVNH149, (II) 235GLRIDSLQQ243, (III) 263GEVFN267, (IV) 327FLENQD332, placed the enzyme in the GH13 α-amylase family. Furthermore, sequence comparison suggests that the C. flavus α-amylase has a C-terminal starch-binding domain characteristic of the CBM20 family. AMY1 was successfully expressed in Saccharomyces cerevisiae . The time course of amylase secretion in S. cerevisiae resulted in a maximal extracellular amylolytic activity (3.93 U mL−1) at 60 h of incubation. The recombinant protein had an apparent molecular mass similar to the native enzyme ( c . 67 kDa), part of which was due to N-glycosylation.  相似文献   

13.
A gene encoding valine dehydrogenase (Vdh) has been cloned from Streptomyces albus, a salinomycin producer, and expressed in Escherichia coli. The S. albus Vdh is composed of 364 amino acids that showed high homology with several other amino acid dehydrogenases as well as Vdhs from Streptomyces spp. and leucine and phenylalanine dehydrogenases (Ldh and Pdh) from Bacillus spp. A protein of 38 kDa, corresponding to the approximate mass of the predicted S. albus Vdh product (38.4 kDa) exhibiting specific Vdh activity, was observed when the S. albus vdh gene was overexpressed in E. coli under the controlled T7 promoter and was subsequently purified to homogeneity. Among branched- and straight-chain amino acids, L-valine and L-alpha-aminobutyrate were the preferred substrates for the enzyme. Lys-79 and Lys-91 of S. albus Vdh were highly conserved in the corresponding region of NAD(P)(+)-dependent amino acid dehydrogenase sequences. To elucidate the functional roles of the lysyl residues, the Lys residues have individually been replaced with Ala by site-directed mutagenesis. Kinetic analyses of the Lys-79 and Lys-91-mutated enzymes revealed that they are involved in the substrate binding site and catalysis, respectively, analogous to the corresponding residues in the homologous Ldh and Pdh.  相似文献   

14.
利用染色体步移策略,以尼可霉素生物合成相关的基因片段为探针,从圈卷产色链霉菌中克隆到了一个大约10kb的DNA片段。对其中1.8kb的PvuⅡ-SacⅡ片段进行了序列分析,结果表明:此片段中含有一个具有1170个核苷酸的完整开放阅读框,起始密码子为447位的ATG,终止密码子为1614位的TGA,推测其编码一个389个氨基酸的蛋白质产物。利用BLASTX程序进行了分析揭示,此基因编码一个肌氨酸单体  相似文献   

15.
16.
The xynHB gene, encoding alkaline xylanase was cloned from Bacillus pumilus by a shot-gun method. The gene was cloned into vector pHBM905A, and expressed in Pichia pastoris GS115. Xylanase-secreting transformants were selected on plates containing RBB-xylan. Enzymatic activity in the culture supernatants was up to 644?U?mL?1 and the optimal secretion time was 4 days at 25°C. SDS-PAGE showed two bands, of 32.2?kDa and 29.6?kDa, both larger than the predicted mass of 22.4?kDa based on its amino acid sequence. Zymogram analysis demonstrated that the enzyme in both bands could hydrolyze xylan. Deglycosylation by endoglycosidase H revealed that both were derived from the same protein but contain different extents of glycosylation (30 and 25%). The optimal pH and temperature of the enzyme was pH6–9 and 50°C, respectively.  相似文献   

17.
The xynHB gene, encoding alkaline xylanase was cloned from Bacillus pumilus by a shot-gun method. The gene was cloned into vector pHBM905A, and expressed in Pichia pastoris GS115. Xylanase-secreting transformants were selected on plates containing RBB-xylan. Enzymatic activity in the culture supernatants was up to 644 U mL-1 and the optimal secretion time was 4 days at 25°C. SDS-PAGE showed two bands, of 32.2 kDa and 29.6 kDa, both larger than the predicted mass of 22.4 kDa based on its amino acid sequence. Zymogram analysis demonstrated that the enzyme in both bands could hydrolyze xylan. Deglycosylation by endoglycosidase H revealed that both were derived from the same protein but contain different extents of glycosylation (30 and 25%). The optimal pH and temperature of the enzyme was pH6-9 and 50°C, respectively.  相似文献   

18.
19.
链霉菌139能够产生一种新的胞外多糖139A,该多糖具有抗类风湿性关节炎的活性。为研究多糖139A的生物合成基因簇,首要策略是克隆到在多糖139A的生物合成中起关键作用的引导糖基转移酶基因。根据其他几个种属的糖基转移酶氨基酸序列的两个保守区域设计简并引物,通过PCR方法扩增出相应的DNA片段作为探针,从链霉菌139基因组文库中分离到引导糖基转移酶基因ste5,并定位于约32kb的基因簇上。序列分析发现其蛋白序列与引导糖基转移酶具有较高的同源性,其C-端含有A,B和C3个保守区,N-端具有5个跨膜区。引导糖基转移酶基因阻断突变株不能够产生多糖139A表明其参与多糖139A的生物合成。  相似文献   

20.
The gene of a peroxidase described as being involved in carotenoid degradation was cloned from a strain that was conserved as Lepista irina (CBS 458.79). Gene sequencing revealed high nucleotide and amino-acid identity with Pleurotus eryngii gene vpl, which encodes a versatile peroxidase with unique catalytic properties, and only reported in Pleurotus and Bjerkandera species. Re-identification of the supposed L. irina strain revealed that, in fact, it is a P. eryngii strain. The new P. eryngii peroxidase was expressed in Escherichia coli, and the recombinant protein folded in the presence of cofactor to obtain the active form. The purified enzyme was able to oxidize Mn2+, veratryl alcohol, substituted phenols, and both low and high redox-potential dyes, demonstrating that it belongs to the versatile peroxidase family (named VPL3). These catalytic properties agreed with the presence of both Mn2+ and aromatic-substrate oxidation sites in its molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号