首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effect of CaCl2 and Ca(NO3)2 on fungal growth of Phytophthora sojae isolates, disease reduction on two cultivars of Glycine max (L.) Merr. cv. Chusei‐Hikarikuro (black soybean) and cv. Sachiyutaka (white soybean) and zoospore release. A concentration of 20–30 mm CaCl2 or 30 mm Ca(NO3)2 led to a slight decrease of the growth rate of two isolates on PDA; however, 0.4 and 4 mm of CaCl2 and Ca(NO3)2 increased growth. The application of 4 mm CaCl2 or more than 4 mm Ca(NO3)2 before inoculation greatly inhibited infection in the two soybean cultivars. Disease suppression recorded in laboratory experiments using pathogen mycelium was because of the response of plant tissues rather than a direct inhibition of pathogen hyphal growth by the application of calcium. Furthermore, Ca(NO3)2 was more effective than CaCl2. The calcium contents in plants increased at the time of inoculation. The extent of disease reduction was related to an increased calcium uptake by plants of the two cultivars, except for some cases involving cv. Chusei‐Hikarikuro. Results showed that the effective element in reducing Phytophthora stem rot was calcium and that differences existed between the two cultivars in terms of the mechanisms of calcium uptake and the effect on disease suppression. The presence of 4–30 mm CaCl2 and Ca(NO3)2 decreased the release of zoospores from isolates on lima bean agar, although 0.4 mm CaCl2 and Ca(NO3)2 significantly induced zoospore release. These results suggest the possibility of applying a solution containing more than 4 mm of calcium to decrease the incidence of disease in agricultural fields by the inhibition of zoospore release.  相似文献   

2.
Natural and post-harvest ethylene-induced pigment changes in the rind of Satsuma mandarin ( Citrus unshiu Marc.) fruits respond differently to the exogenous application of growth regulators. Both gibberellin A3 and the synthetic cytokinins N6-benzyladenine and kinetin opposed the ethylene-induced chlorophyll destruction, while the loss of chlorophyll during natural maturation was retarded by the gibberellin but not by the cytokinins. This different behaviour suggests that ethylene may not be playing a central role in the endogenous control of ripening. Carotenoid accumulation during natural maturation is apparently controlled through a different mechanism than chlorophyll loss since it is reduced both by the cytokinins and gibberellin A3.
Kinetin and gibberellin A3 increased to a similar extent the accumulation of reducing sugars and free amino acids, and reduced that of non-reducing sugars in the peel during natural maturation. Their differential effect on chlorophyll loss may not be explained through their effects on sugar accumulation.  相似文献   

3.
The changes caused by NaCl− and CaCl2-induced salinity on several leaf parameters have been measured in two cultivars of barley ( Hordeum vulgare L.) growing in a growth chamber in nutrient solution. Salinity was induced by adding to the nutrient solution equal weights of NaCl and CaCl2, to obtain conductivities of 2, 6, 12, 19 and 26 dS m−1. Salinity induced decreases in the leaf water potential and in the osmotic potential. Salinity did not induce significant changes in the relative photosynthetic pigment composition of barley leaves, the photosynthetic pigment stoichiometry for neoxanthin:violaxanthin cycle pigments:lutein:β-carotene:Chl b :Chl a being close to 3:6:14:12:25:100 (mol:mol). Salinity per se did not induce interconversions in the carotenoids within the violaxanthin cycle in most barley leaves. The PSII photochemistry of most barley leaves was unchanged by salinity. However, some apparently healthy leaves growing in high salinity exhibited sudden decreases in PSII photochemistry and increases in zeaxanthin (at the expense of violaxanthin), that preceded rapid leaf drying. Salinity induced significant changes in the slow part of the chlorophyll fluorescence induction curve from barley leaves.  相似文献   

4.
邱翠花  计玮玮  郭延平 《生态学报》2011,31(13):3802-3810
以3年生温州蜜柑(Citrus unishiu Marc.)植株为试材,用叶绿素荧光分析、Western-blotting蛋白质印记技术及DAB(3,3'-二氨基联苯胺)显色法,研究了高温强光(38℃和1600 μmol?m-2?s-1)对叶片叶绿素荧光参数、PS(光系统)II反应中心D1蛋白和Deg1蛋白酶的影响和SA(水杨酸)的效应。结果表明,高温强光交互作用4 h后,叶片的初始荧光Fo升高,最大光能转化效率Fv/Fm、表观光合电子传递速率ETR及PSII的量子产额ΦPSII显著降低,在D1蛋白降解的同时,Deg1蛋白酶含量也下降,并伴有H2O2的积累。在高温强光下,外源的H2O2使叶绿素荧光动力学快相参数(Fi-Fo)/(Fp-Fo)值(反映PSII中QB非还原中心的数量)升高和I-P的斜率(反映PSII 活化中心还原态QA积累的值)下降,Fv/Fm、ETR、ΦPSII及D1蛋白和Deg1蛋白酶下降幅度增大;而外源的SA使这些参数下降幅度减小。这些结果说明,高温强光诱导H2O2的积累造成Deg1蛋白酶和光系统反应中心D1蛋白的降解,Deg1蛋白酶的减少也进一步限制了D1蛋白的周转,进而使温州蜜柑PSII反应中心遭到破坏,SA对光合机构光破坏有保护作用。  相似文献   

5.
In this study, amiodarone, at very low concentrations, produced a clear efflux of K+. Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K+ efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca2+ and H+, the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca2+ concentration, as well as the decreased internal pH. The Δ tok1 and Δ nha1 mutations resulted in a smaller effect of amiodarone, and Δ trk1 and Δ trk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K+, through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.  相似文献   

6.
1 In a glasshouse experiment we studied the effect of raised CO2 concentration (720 p.p.m.) on CH4 emission at natural boreal peat temperatures using intact cores of boreal peat with living vascular plants and Sphagnum mosses. After the end of the growing season half of the cores were kept unnaturally warm (17–20 °C). The potential for CH4 production and oxidation was measured at the end of the emission experiment.
2 The vascular cores ('Sedge') consisted of a moss layer with sedges, and the moss cores (' Sphagnum ') of Sphagnum mosses (some sedge seedlings were removed by cutting). Methane efflux was 6–12 times higher from the Sedge cores than from the Sphagnum cores. The release of CH 4 from Sedge cores increased with increasing temperature of the peat and decreased with decreasing temperature. Methane efflux from Sphagnum cores was quite stable independent of the peat temperatures.
3 In both Sedge and Sphagnum samples, CO2 treatment doubled the potential CH4 production but had no effect on the potential CH4 oxidation. A raised concentration of CO2 increased CH4 efflux weakly and only at the highest peat temperatures (17–20 °C).
4 The results suggest that in cool regions, such as boreal wetlands, temperature would restrict decomposition of the extra substrates probably derived from enhanced primary production of mire vegetation under raised CO2 concentrations, and would thus retard any consequent increase in CH4 emission.  相似文献   

7.
8.
The (C2H4+ H2(C2H2))/15N2 ratios of 15 clover- Rhizobium symbionts. soybean, and black medick symbionts were measured. Relative efficiency based on the C2H4 production and on 15N2 incorporation were compared, and in most symbionts there was little difference between the two measures of relative efficiency. Total measurable electron flux through nitrogenase during acetylene reduction and 15N2 incorporation were nearly equal for most symbionts studied. The relative efficiency and the (C2H4+ H2(C2H2))/15N2 ratio showed an inverse correlation. Use of this ratio appears preferable to use of the ratio of C2H2 reduction/N2 reduction. Some evolution of H2 was observed in the presence of C2H2.  相似文献   

9.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

10.
Abstract Using a high level Escherichia coli expression system for the Penicillium chrysogenum penDE gene, we have produced acyl-coenzyme A: isopenicillin N acyltransferase (AT) enzymes containing amino acid substitutions at three conserved Ser residues. Chosen for study based on amino acid sequence homologies to other proteins, Ser227, Ser230 and Ser309 were changed to Cys or Ala to assess amino acid side chain involvement in proenzyme cleavage and AT enzyme mechanism. Substitutions at Ser230 had no effect on proenzyme cleavage, acyl-coenzyme A: IPN acyltransferase (IAT) or acyl-coenzyme A: 6-aminopenicillanic acid acyltransferase (AAT) activities. While Ser227→Cys had no effect, Ser227→Ala produced uncleaved proenzyme lacking both AAT and IAT activities, suggesting that the presence of a nucleophilic side chain at this residue is required for proenzyme cleavage and AT activity. Substitution of Ser309→Cys did not appreciably prevent proenzyme cleavage, IAT or AAT activity. Recombinant AT (recAT) proenzyme containing Ser309→Ala was cleaved; however, IAT and AAT activities were not observed. This separation of proenzyme cleavage from IAT and AAT activities has not been previously observed, and suggests that Ser309 is involved in substrate acylation.  相似文献   

11.
Naturally regenerated Scots pines (Pinus sylvestris L.), aged 28–30 years old, were grown in open-top chambers and subjected in situ to three ozone (O3) regimes, two concentrations of CO2, and a combination of O3 and CO2 treatments From 15 April to 15 September for two growing seasons (1994 and 1995). The gas exchanges of current-year and 1-year-old shoots were measured, along with the nitrogen content of needles. In order to investigate the factors underlying modifications in photosynthesis, five parameters linked to photosynthetic performance and three to stomatal conductance were determined. Elevated O3 concentrations led to a significant decline in the CO2 compensation point (Г*), maximum RuP2-saturated rate of carboxylation (Vcmax), maximum rate of electron transport (Jmax), maximum stomatal conductance (gsmax), and sensitivity of stomatal conductance to changes in leaf-to-air vapour pressure difference (?gs/?Dv) in both shoot-age classes. However, the effect of elevated O3 concentrations on the respiration rate in light (Rd) was dependent on shoot age. Elevated CO2(700 μmol mol?1) significantly decreased Jmax and gsmax but increased Rd in 1-year-old shoots and the ?gs/?Dv in both shoot-age classes. The interactive effects of O3 and CO2 on some key parameters (e.g. Vcmax and Jmax) were significant. This may be closely related to regulation of the maximum stomatal conductance and stomatal sensitivity induced by elevated CO2. As a consequence, the injury induced by O3 was reduced through decreased ozone uptake in 1-year-old shoots, but not in the current-year shoots. Compared to ambient O3 concentration, reduced O3 concentrations (charcoal-filtered air) did not lead to significant changes in any of the measured parameters. Compared to the control treatment, calculations showed that elevated O3 concentrations decreased the apparent quantum yield by 15% and by 18%, and the maximum rate of photosynthesis by 21% and by 29% in the current-year and 1-year-old shoots, respectively. Changes in the nitrogen content of needles resulting from the various treatments were associated with modifications in photosynthetic components.  相似文献   

12.
The world's growing human population causes an increasing demand for food, of which rice is one of the most important sources. In rice production nitrogen is often a limiting factor. As a consequence increasing amounts of fertiliser will have to be applied to maximise yields. There is an ongoing discussion on the possible effects of fertilisation on CH4 emissions. We therefore investigated the effects of N‐fertiliser (urea) on CH4 emission, production and oxidation in rice microcosms and field experiments. In the microcosms, a substantial but short‐lived reduction of CH4 emission was observed after N‐addition to 43‐d‐old rice plants. Methane oxidation increased by 45%, demonstrated with inhibitor measurements and model calculations based on stable carbon isotope data (δ13CH4). A second fertilisation applied to 92‐d‐old plants had no effect on CH4 emission rates. The positive effect of additional N on methanotrophic bacteria was also found in vitro for potential CH4 oxidation rates in soil and root samples from the microcosm and field experiments, indicated by elevated initial oxidation rates and reduced lag‐phases. Fertilisation did not affect methane production in the microcosms. In the field, the effects were diverse: methane production was inhibited in the topsoil, but stimulated instead in the bulk soil. Stimulation occurred probably in the anaerobic food chain at the level of hydrolytic or fermenting bacteria, because acetate, a methanogenic precursor, increased simultaneously. Combining field, microcosm and laboratory experiments we conclude that any agricultural treatment improving the N‐supply to the rice plants will also be favourable for the CH4 oxidising bacteria. However, N‐fertilisation had only a transient influence and was counter‐balanced in the field by an elevated CH4 production. A negative effect of the fertilisation was a transient increase of N2O emissions from the microcosms. However, integrating over the season the global warming potential (GWP) of N2O emitted after fertilisation was still negligible compared to the GWP of emitted CH4.  相似文献   

13.
The responses of photosynthesis to high light and low temperature were studied in vines cultivated in the greenhouse in low light. Exposure to high light (1000 /umol m?2 s?1) or low temperature (5 °C) alone had no measurable effect on the photosynthetic processes, but the combination of high light and low temperature caused rapid loss of photosynthetic capacity and a decrease in the efficiency of photosynthetic energy conversion. After a 15 h exposure to 5°C at high light, the Fv/sb/Fmratio had decreased by 80% and the apparent quantum yield by 75%. Nevertheless, when the leaves were returned to low light at 22°C, these parameters recovered rapidly. The foliar pools of ascorbate and glutathione decreased in the first hours of photoinhibitory treatment while the zeaxanthin content increased from negligible levels to about 50% of the total foliar xanthophyll pool. There was a clear correlation between the zeaxanthin content of the leaves and their Fv/Fm ratio during both photoinhibition and recovery. However, there was also a good correlation between the decrease in theFv Fm ratio and the measured decrease in the total foliar levels of the antioxidants ascorbate and glutathione. The amount of D, protein diminished over the same period as the zeaxanthin levels were increasing. This approach, involving simultaneous measurements of several parameters considered to influence photosystemy II activity, clearly demonstrates that measured decreases in Fv/Fm may not simply be related to zeaxanthin levels or to amounts of D1 protein alone but result from multifactoral influences.  相似文献   

14.
Two cultivars of spring wheat (Triticum aestivum L. cvs. Alexandria and Hanno) and three cultivars of winter wheat (cvs. Riband, Mercia and Haven) were grown at two concentrations of CO2 [ambient (355 pmol mol?1) and elevated (708 μmol mol?1)] under two O3 regimes [clean air (< 5 nmol mol?1 O3) and polluted air (15 nmol mol?1 O3 at night rising to a midday maximum of 75 nmol mol?1)] in a phytotron at the University of Newcastle-upon-Tyne. Between the two-leaf stage and anthesis, measurements of leaf gas-exchange, non-structural carbohydrate content, visible O3 damage, growth, dry matter partitioning, yield components and root development were made in order to examine responses to elevated CO2 and/or O3. Growth at elevated CO2 resulted in a sustained increase in the rate of CO2 assimilation, but after roughly 6 weeks' exposure there was evidence of a slight decline in the photosynthetic rate (c.-15%) measured under growth conditions which was most pronounced in the winter cultivars. Enhanced rates of CO2 assimilation were accompanied by a decrease in stomatal conductance which improved the instantaneous water use efficiency of individual leaves. CO2 enrichment stimulated shoot and root growth to an equivalent extent, and increased tillering and yield components, however, non-structural carbohydrates still accumulated in source leaves. In contrast, long-term exposure to O3 resulted in a decreased CO2 assimilation rate (c. -13%), partial stomatal closure, and the accumulation of fructan and starch in leaves in the light. These effects were manifested in decreased rates of shoot and root growth, with root growth more severely affected than shoot growth. In the combined treatment growth of O3-treated plants was enhanced by elevated CO2, but there was little evidence that CO2 enrichment afforded additional protection against O3 damage. The reduction in growth induced by O3 at elevated CO2 was similar to that induced by O3 at ambient CO2 despite additive effects of the individual gases on stomatal conductance that would be expected to reduce the O3 flux by 20%, and also CO2-induced increases in the provision of substrates for detoxification and repair processes. These observations suggest that CO2 enrichment may render plants more susceptible to O3 damage at the cellular level. Possible mechanisms are discussed.  相似文献   

15.
This is the first report of a quantitative radioimmunoassay for PO. The assay uses antigen-coated plastic microwells, with antibody binding detected by 125I-labeled protein A. Either peripheral myelin proteins or purified PO may be used as the antigen. Optimal extraction of tissue samples for PO immunoassay requires careful attention to the sodium dodecyl sulfate-to-protein ratio. Sodium dodecyl sulfate interference with antibody binding can be minimized by adding an excess of nonionic detergent and carrier protein to the incubation buffer. This method allows the detection of 0.8 ng of PO (20 ng/ml). Results from this assay showed little or no immunoreactivity in extracts of brain, centra myelin, liver, purified myelin basic proteins, cultured, purified secondary Schwann cells, or membrane preparations from these cells. PO was clearly detectable in Schwann cell cultures from 3- to 4-day-old rats at 12-18 h after dissociation (4% of the level in adult sciatic nerve) and in extracts of one-day-old rat sciatic nerve (2% of the level in adult nerve). Myelin basic protein radioimmunoassays showed that the ratio of PO to myelin basic protein is essentially constant in extracts of sciatic nerve from ne-day-old, four-day-old, and young adult rats. Another result was that PO levels are reduced in the trembler mouse sciatic nerve.  相似文献   

16.
The water fern Azolla pinnata R. Br. was fumigated for 1 week with either 25, 50 or 100 nl 1−1 SO2. The symbiosis of Azolla with Anabaena azollae (spp.) was severely damaged by atmospheric SO2 even at concentrations as low as 25 nl 1−1, with significant reductions in growth, reduction of C2H2, NH3 assimilation, protein synthesis, and heterocyst development. These disturbances appear to be mainly responsible for the extreme sensitivity of this fern to atmospheric SO2. Changes in violaxanthin/antheraxanthin and epoxy-lutein/lutein ratios also indicate that free radical products are induced by atmospheric SO2. These results suggest that the Azolla-Anabaena symbiotic system is a very responsive and reliable lower plant model to study the detailed effects of total sulphur deposition upon the balances between various important plant metabolic processes.  相似文献   

17.
Plants of Nardus stricta growing near a cold, naturally emitting CO2 spring in Iceland were used to investigate the long-term (> 100 years) effects of elevated [CO2] on photosynthesis, biochemistry, growth and phenology in a northern grassland ecosystem. Comparisons were made between plants growing in an atmosphere naturally enriched with CO2 (≈ 790 μ mol mol–1) near the CO2 spring and plants of the same species growing in adjacent areas exposed to ambient CO2 concentrations (≈360 μ mol mol–1). Nardus stricta growing near the spring exhibited earlier senescence and reductions in photosynthetic capacity (≈25%), Rubisco content (≈26%), Rubisco activity (≈40%), Rubisco activation state (≈23%), chlorophyll content (≈33%) and leaf area index (≈22%) compared with plants growing away from the spring. The potential positive effects of elevated [CO2] on grassland ecosystems in Iceland are likely to be reduced by strong down-regulation in the photosynthetic apparatus of the abundant N. stricta species.  相似文献   

18.
19.
Field, greenhouse and laboratory investigations were conducted to determine the effect of four dinitroaniline herbicides on rhizobia, nodulation and nitrogen fixation of four groundnut cultivars. Benefin, dinitramine and nitralin used at recommended levels decreased nodule dry weight, nitrogenase activity and total nitrogen of groundnut tops and pod yield in three cultivars Kadiri 71-1, Kadiri-2, ICGS-11 and not for a fourth cultivar, Kadiri-3 of groundnut (Arachis hypogaea L.), but fluchloralin used at the recommended level increased the nodulation rate, nitrogenase activity and total nitrogen of groundnut tops and pod yield compared to untreated plants. Studies were conducted in vitro to determine the relative toxicity of the herbicides on four Rhizobium strains isolated from the nodules of four cultivars of groundnut. It was found that various strains of rhizobia differ in their sensitivity to different rates of the herbicides tested. Carbon dioxide exchange rate (CER) of all the cultivars which received herbicide treatment was measured at different time intervals to determine the relationship between photosynthesis and inhibition of nodulation. The lack of adverse effect on the CER of four cultivars when treated at recommended concentrations indicated that nitrogen fixation was affected in cultivars Kadiri 71-1, Kadiri-2 and ICGS-11 due to inhibition of nodulation.  相似文献   

20.
The above-ground parts of two years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed to filtered air, NH3, NO2+, SO2 (66, 96 and 95 μg m?3, respectively), to a mixture of NO2+NH3 (55 + 82 μg m?3) or SO2+NO2 (128 + 129 μg m?3), for 8 months in fumigation chambers. Both chlorophyll fluorescence and gas exchange measurements were carried out on shoots which had sprouted at the beginning of the exposure period. The chlorophyll fluorescence measurements were performed after 3 and 5 months of exposure (average shoot age 70 and 140 days, respectively). Light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. In addition, light response curves of net CO2 assimilation were determined after 5 months of exposure. After 3 months of exposure (average shoot age 70 days) all exposure treatments showed a lower maximum electron transport rate (Jmax) as compared to the control shoots (filtered air). A large reduction (45%) was observed for shoots exposed to SO2+NO2. During the exposure period between 3 and 5 months (average shoot age 70 and 140 days, respectively) a decrease of Jmax was observed for all treatments. Jmax had further declined some time after termination of the exposure, when average shoot age was 310 days. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum net CO2 assimilation (Pmax) as compared to the control shoots. However, shoots exposed to NO2 showed no reduction and even a higher Pmax was observed for shoots exposed to NH3 or NO2+NH3. Needles of these treatments also showed a higher chlorophyll content which might explain the contradictory results obtained for these treatments: the increased amount of photosynthetic units counteracts the reduction in Jmax and consequently no reduction in Pmax is measured. Shoots exposed to SO2 and SO2+NO2 also showed a reduction in maximum stomatal conductance (gs). However, the stomatal opening was larger than could be expected on basis of their (maximum) CO2 assimilation rate. Consequently, water use efficiency of these shoots was lower than that of the control shoots. Also shoots exposed to NO2 had a lower water use efficiency due to a significantly higher maximum gs. Shoots exposed to NH3 showed a high transpiration rate in the dark, indicating imperfect stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号