首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cognitive deficits in survivors of traumatic brain injury (TBI) are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays) to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive) or surviving (Fluoro-Jade- negative) pyramidal neurons obtained by laser capture microdissection (LCM). In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER) stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.  相似文献   

2.
Real competitive PCR (rcPCR) has been shown to have high sensitivity, reproducibility, and high-throughput potential. We describe further development and evaluation of this methodology as a tool for measuring nucleic acid abundance within a cell. Modifications to the original protocol allow analysis of gene expression levels using standard conditions regardless of mRNA abundance and assay type, thereby increasing throughput and ease of reaction setup while decreasing optimization time. In addition, we have developed a software package, TITAN, to automatically analyze the results. The details are relevant to researchers performing competitive PCR using any detection technique. The effectiveness of the described developments is demonstrated using 12 genes known to have differential expression in cell lines grown under normal and hypoxic conditions. Quantitative and qualitative comparisons to real-time PCR are presented. It is also demonstrated that the technique is capable of detecting submicroscopic chromosomal DNA deletions.  相似文献   

3.
4.
细胞编程死亡(programedcelldeath)是细胞生理性死亡的一种主要形式。Bax具有抑制细胞编程死亡的作用。本研究采用PCR方法,从人肿瘤细胞HL—60cDNA文库中扩增出若干个baxcDNA片段,然后将它们分别与PGEM—T测序质粒载体连接,并转化到大肠杆菌JM109中去。用蓝/白法筛选重组菌落,经酶切分析及PCR鉴定,获得了插入片段大小约为0.4kb及1.1kb的BaxcDNA重组质粒PBaxl和pBax2。这些片段的测序及表达工作正在进行之中。  相似文献   

5.
The effect of capsaicin, main pungent ingredient of hot chilli peppers, in the gene expression profile of human prostate PC-3 cancer cells has been analyzed using a microarray approach. We identified 10 genes that were down-regulated and five genes that were induced upon capsaicin treatment. The data obtained from microarray analysis were then validated using quantitative real-time PCR assays and Western blot analysis. The most remarkable change was the up-regulation of GADD153/CHOP, an endoplasmic reticulum stress-regulated gene. Activation of GADD153/CHOP protein was corroborated by immunofluorescence and Western blot. We then tested the contribution of GADD153/CHOP to protection against capsaicin-induced cell death using RNA interference. Blockage of GADD153/CHOP expression by small interfering RNA, significantly reduced capsaicin-induced cell death in PC-3 cells. Taken together, these results suggested that capsaicin induces the antiproliferative effect through a mechanism facilitated by ER stress in prostate PC-3 cells.  相似文献   

6.
胰岛素样生长因子 1(IGF 1)是一种多功能的细胞增殖调控因子 ,其表达水平受多种因素的影响 ,为了研究IGF 1基因在转录水平上的调控机制 ,建立了定量测定IGF 1mRNA的竞争性PCR方法 .同时 ,也建立了一种简便的制备同源性竞争模板的方法 .以构建好的重组pUC IGF 1质粒为基础 ,利用IGF 1mRNA序列上唯一存在 ,但是在pUC18质粒上多拷贝的MspⅠ酶切位点 ,以该限制性内切酶处理重组pUC IGF 1质粒 .在T4DNA连接酶作用下对酶切产物进行随机连接 ,以连接产物作为模板 ,用可扩增IGF 1cDNA的引物进行PCR ,由此得到因含有随机插入序列而与原IGF 1cDNA产生明显长度差别的重组IGF 1.以不同浓度的该DNA片段作为同源竞争模板与大鼠肝组织cDNA在同一反应体系中进行PCR ,对PCR产物进行分析 ,计算出样本中IGF 1cDNA的初始浓度 .成功地建立了IGF 1mRNA的竞争性PCR定量检测方法 ,为研究IGF 1基因的表达调控奠定了基础 ,同时也为对已克隆的基因进行mRNA定量测定提供了一种简便和灵敏的手段  相似文献   

7.
P21(Waf1/Cip1/Sid1) is a critical component of biomolecular pathways leading to the G(1) arrest evoked in response to DNA damage, growth arrest signals and differentiation commitment. It belongs to the Cip/Kip class of cyclin-dependent kinase inhibitors and is at least partly regulated by p53. P21(Waf1/Cip1/Sid1) functional inactivation possibly resulting from mutations of the gene itself or, more likely, from p53 mutations may be critical for either the cell fate following DNA-damaging insults or clonal evolution toward malignancy. In the study presented here we describe a competitive polymerase chain reaction (PCR) strategy whose sensitivity and reproducibility enable us to attain a precise quantitation of p21(Waf1/Cip1/Sid1) expression levels in hematopoietic progenitors, the cell compartment which mostly suffers from the side effects of genotoxic drugs in use for cancer cure. The strategy was set in the M07 factor-dependent hematopoietic progenitor cell line. We confirmed that its p21(waf1/cip1/sid1) constitutive expression level is very low and up-modulated by DNA-damaging agents: ionizing radiations and ultraviolet light. Gene up-modulation resulted in checkpoint activation and, in particular, in a significant G(1) arrest, required for either the repair of damaged DNA sequences or apoptotic cell death. Our competitive PCR strategy was further validated in CD34(+) purified hematopoietic progenitors from healthy donors mobilized into the peripheral blood by granulocyte colony-stimulating factor and intended for allogeneic bone marrow transplantation. The constitutive p21(WAF1/CIP1/SID1) expression levels, measured in three separate harvests, were very low and no significant differences were apparent. Our results support the use of a competitive PCR strategy as a useful tool for clinical purposes, to assess the individual biomolecular response of early hematopoietic progenitors to antiblastic drugs.  相似文献   

8.
We describe an mRNA profiling technique for determining differential gene expression that utilizes, but does not require, prior knowledge of gene sequences. This method permits high-throughput reproducible detection of most expressed sequences with a sensitivity of greater than 1 part in 100,000. Gene identification by database query of a restriction endonuclease fingerprint, confirmed by competitive PCR using gene-specific oligonucleotides, facilitates gene discovery by minimizing isolation procedures. This process, called GeneCalling, was validated by analysis of the gene expression profiles of normal and hypertrophic rat hearts following in vivo pressure overload.  相似文献   

9.
Leucine-rich repeat proteins (LRRs) function in a number of signal transduction pathways via protein–protein interactions. The gene encoding a small protein of pepper, CaLRR1 , is specifically induced upon pathogen challenge and treatment with pathogen-associated molecular patterns (PAMPs). We identified a pepper hypersensitive induced reaction (CaHIR1) protein that interacts with the LRR domain of the CaLRR1 protein using yeast two-hybrid screening. Ectopic expression of the pepper CaHIR1 gene induces cell death in tobacco and Arabidopsis, indicating that the CaHIR1 protein may be a positive regulator of HR-like cell death. Because transformation is very difficult in pepper plants, we over-expressed CaLRR1 and CaHIR1 in Arabidopsis to determine cellular functions of the two genes. The over-expression of the CaHIR1 gene, but not the CaLRR1 gene, in transgenic Arabidopsis confers disease resistance in response to Pseudomonas syringae infection, accompanied by the strong expression of PR genes, the accumulation of both salicylic acid and H2O2, and K+ efflux in plant cells. In Arabidopsis and tobacco plants over-expressing both CaHIR1 and CaLRR1 , the CaLRR1 protein suppresses not only CaHIR1 -induced cell death, but also PR gene expression elicited by CaHIR1 via its association with HIR protein. We propose that the CaLRR1 protein functions as a novel negative regulator of CaHIR1-mediated cell death responses in plants.  相似文献   

10.
ABSTRACT: BACKGROUND: The Real-time PCR Array System is the ideal tool for analyzing the expression of a focused panel of genes. In this study, we will analyze the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. METHODS: Real-time PCR array was designed and tested firstly. Then gene expression profile of 11 pediatric AML and 10 normal controls was analyzed with real-time PCR arrays. We analyzed the expression data with MEV (Multi Experiment View) cluster software. Datasets representing genes with altered expression profile derived from cluster analyses were imported into the Ingenuity Pathway Analysis Tool. RESULTS: We designed and tested 88 real-time PCR primer pairs for a quantitative gene expression analysis of key genes involved in pediatric AML. The gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. To investigate possible biological interactions of differently regulated genes, datasets representing genes with altered expression profile were imported into the Ingenuity Pathway Analysis Tool. The results revealed 12 significant networks. Of these networks, Cellular Development, Cellular Growth and Proliferation, Tumor Morphology was the highest rated network with 36 focus molecules and the significance score of 41. The IPA analysis also groups the differentially expressed genes into biological mechanisms that are related to hematological disease, cell death, cell growth and hematological system development. In the top canonical pathways, p53 and Huntington's disease signaling came out to be the top two most significant pathways with a p value of 1.5E-8 and2.95E-7, respectively. CONCLUSIONS: The present study demonstrates the gene expression profile of pediatric AML is significantly different from normal control; there are 19 genes up-regulated and 25 genes down-regulated in pediatric AML. We found some genes dyes-regulated in pediatric AML for the first time as FASLG, HDAC4, HDAC7 and some HOX family genes. IPA analysis showed the top important pathways for pediatric AML are p53 and Huntington's disease signaling. This work may provide new clues of molecular mechanism in pediatric AML.  相似文献   

11.
Drosophila myc regulates organ size by inducing cell competition   总被引:7,自引:0,他引:7  
Experiments in both vertebrates and invertebrates have illustrated the competitive nature of growth and led to the idea that competition is a mechanism of regulating organ and tissue size. We have assessed competitive interactions between cells in a developing organ and examined their effect on its final size. We show that local expression of the Drosophila growth regulator dMyc, a homolog of the c-myc protooncogene, induces cell competition and leads to the death of nearby wild-type cells in developing wings. We demonstrate that cell competition is executed via induction of the proapoptotic gene hid and that both competition and hid function are required for the wing to reach an appropriate size when dMyc is expressed. Moreover, we provide evidence that reproducible wing size during normal development requires apoptosis. Modulating dmyc levels to create cell competition and hid-dependent cell death may be a mechanism used during normal development to control organ size.  相似文献   

12.
13.
K Sergueev  D Yu  S Austin  D Court 《Gene》2001,272(1-2):227-235
Induction of a lambda prophage causes the death of the host cell even in the absence of phage replication and lytic functions due to expression of functions from the lambda p(L) operon. We genetically modified the lambda prophage to determine which lambda p(L) operon functions were involved in cell killing. Viability assays and flow cytometry were used to monitor cell death and filamentation. The kil gene was shown to cause cell death and filamentation as described previously. Another killing activity was mapped within the p(L) operon to the gam gene. Inspection of the DNA sequence showed that there are two possible translation start points for both kil and gam. In both cases, the shorter of the two possible products could cause cell killing. The shorter products were also sufficient for the known filamentation and recombination activities of the respective Kil and Gam functions. The expression level of the p(L) operon is down-regulated by Cro repressor. In the absence of Cro, higher p(L) expression levels allow either Kil or Gam to be lethal or growth inhibitory, whereas at lowered expression in Cro-repressed conditions, only Kil is lethal. The filamentation function of Kil and recombination activity of Gam are unaffected at Cro-repressed levels of expression.  相似文献   

14.
15.
用PCR法从隐地疫霉 (Phytophthoracryptogea)基因组DNA中克隆了cryptogein(Cry)基因。将Cry基因的 13位赖氨酸 (K)突变成缬氨酸 (V) ,获突变基因CryK13V ,并将其构建于CaMV35S启动子控制的植物表达载体上。通过农杆菌介导的叶盘转化法转入烟草 ,经卡那霉素抗性筛选获 33株再生植株 ,PCR检测和Southern杂交分析表明CryK13V基因已整合到烟草基因组中。接种试验结果表明 ,转基因烟草植株对黑胫病菌、赤星病菌和野火病菌等的抗性均有提高。Northern杂交分析表明 ,微弱的CryK13V基因在转化植株中的表达就足以激活PR1和OPBP1等防卫反应相关基因的表达 ,而且表达丰度与转基因植株的抗病性有着一定的正相关性。研究结果还表明 ,隐地蛋白13位上的赖氨酸在诱导细胞死亡中起着关键的作用。  相似文献   

16.
17.
The intestinal epithelium is continuously renewed through a balance between cell proliferation and apoptosis. We identified genes of which expression profiles showed significant modulation, and we investigated the cellular mechanisms of this gene regulation in rat intestine after ventromedial hypothalamic (VMH) lesions. Total RNA was extracted, and differences in the gene expression profiles between rats at day 3 after VMH lesioning and in sham-VMH lesioned rats were investigated using DNA microarray analysis and real-time polymerase chain reaction (PCR) methods. DNA microarray analysis revealed that VMH lesions regulated the genes that were involved in functions predominantly related to neuronal development, cell proliferation and apoptosis. Real-time PCR also confirmed that gene expressions of Efnb1 were downregulated. Meanwhile, expression of Casp3 was similar. It is noted that the signaling networks of many gene families, including neuron-specific genes and apoptosis genes in the intestine were changed after VMH lesioning. VMH lesions may suppress mainly the caspase independent type II pathway for apoptosis and induce cell proliferation in the intestine.  相似文献   

18.
The c-myb proto-oncogene encodes two alternatively spliced mRNAs, which in turn code for proteins of 75 kDa and 89 kDa. It is at present unclear whether the two isoforms of c-Myb perform identical functions or whether they mediate different biological effects. To assess their role in apoptotic death of hematopoietic cells, we expressed the two isoforms of c-Myb in the murine myeloid cell lines 32Dcl3 and FDCP1. Our results show that while ectopic overexpression of p75 c-Myb results in the acceleration of cell death, similar overexpression of p89 c-Myb results in the protection of cells from apoptotic death. An analysis of gene expression changes with mouse cDNA expression arrays revealed that while p75 c-Myb blocked the expression of glutathione S-transferase micro mRNA, p89 c-Myb greatly enhanced the expression of this gene. These results were further confirmed by Northern blot analysis. Ectopic overexpression of the glutathione S-transferase micro gene in 32Dcl3 cells resulted in protection of cells from interleukin-3 withdrawal-induced cell death similar to that seen with the ectopic overexpression of p89 c-Myb. These results suggest that the two isoforms of c-Myb differentially regulate apoptotic death of myeloid cells through differential regulation of glutathione S-transferase micro gene expression.  相似文献   

19.
根据SARS-CoV sars7a基因设计并化学合成部分重叠引物,经二轮PCR获得sars7a基因片段,以此片段为模板并利用一对带有Kozak序列及删除终止密码的引物进行PCR,获得产物与pEGFP-N1载体连接,使sars7a基因位于.EGFP的基因上游,得到含编码Sars7a-EGFP融合蛋白基因的哺乳动物细胞表达载体。采用细胞核转染技术将重组表达载体转染K562细胞,以流式细胞仪和共聚焦显微镜分析,可检测到EGFP的绿色荧光,表明Sars7a—EGFP得到表达,该蛋白分布于整个细胞,提示Sars7a并非膜蛋白,更可能是胞浆蛋白。此外,该蛋白的表达对K562细胞凋亡无明显影响。  相似文献   

20.
N-methyl-D-aspartate (NMDA) receptor is a calcium-permeable ionotropic glutamate receptor and plays a role in many neurologic disorders such as brain ischemia through its involvement in excitotoxicity. We have performed differential display PCR to identify changes in gene expression that occur in the hippocampus of the mouse brain after intraperitoneal injection of NMDA and identified a gene, Tex261 as an inducible gene by NMDA stimulation in vivo. Tex261 mRNA was gradually induced in response to NMDA and reached about 4.5-fold at 24 h. When HEK 293 cells are transfected with NMDA receptors, the cells die in a manner that mimics excitotoxicity in neurons. HEK 293 cells transfected with the combination of Tex261 and the NMDA receptors NR1/NR2A produced the greater cell death compared with the cells transfected with the NMDA receptors alone. These findings suggest that Tex261 modulates the excitotoxic cell death induced by NMDA receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号