首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations in the gene for the pigment-producing enzyme tyrosinase are responsible for type IA (tyrosinase-negative) oculocutaneous albinism (OCA). Most reported mutations have been single base substitutions. We now report three different frameshift mutations in three unrelated individuals with type IA OCA. The first individual has a single base deletion within a series of five guanidines, resulting in a premature stop codon in exon I on one allele and a missense mutation at codon 382 in exon III on the homologous allele. The second individual is a genetic compound of two separate frameshift mutations, including both the same exon I single base deletion found in the first individual and a deletion of a thymidine-guanidine pair, within the sequence GTGTG, forming a termination codon (TAG) in exon I on the homologous allele. The third individual has a single base insertion in exon I on one allele and a missense mutation at codon 373 in exon III on the homologous allele. The two missense mutations occur within the copper Bbinding region and may interfere with either copper binding to the enzyme or oxygen binding to the copper. These five different mutations disrupt tyrosinase function and are associated with a total lack of melanin biosynthesis.  相似文献   

2.
In order to search for mutations resulting in hemophilia A that are not detectable by restriction analysis, three regions of the factor VIII gene were chosen for direct sequence analysis. Short segments of genomic DNA of 127 unrelated patients with hemophilia A were amplified by polymerase chain reaction. A total of 136,017 nucleotides were sequenced, and four mutations leading to the disease were found: a frameshift at codon 360 due to deletion of two nucleotides (GA), a nonsense codon 1705 due to a C----T transition, and two missense codons at positions 1699 and 1708. The first missense mutation (A----T) results in a Tyr----Phe substitution at a putative von Willebrand factor binding site. The second results in an Arg----Cys substitution at a thrombin cleavage site. In addition, we identified three rare sequence variants: a silent C----T transition at codon 34 which does not result in an amino acid change, a G----C change at codon 345 (Val----Leu), and an A----G change at the third nucleotide of intron 14. Direct sequence analysis of amplified DNA is a powerful but labor-intensive method of identifying mutations in large genes such as the human factor VIII gene.  相似文献   

3.
There is a growing and significant demand for reliable, simple and sensitive methods for repeated scanning of a given gene or gene fragment for detection and characterization of mutations. Solid-phase sequencing by single base primer extension of nested GBATM primers on miniaturized DNA arrays can be used to effectively scan targeted sequences for missense, insertion and deletion mutations. This paper describes the use of N-GBA arrays designed to scan the sequence of a 33 base region of exon 8 of the p53 gene (codons 272-282) encompassing a hot spot for mutations associated with the development of cancer. Synthetic DNA templates containing various missense, insertion and deletion mutations, as well as DNA prepared from pancreatic and biliary tumor cells, were genotyped using the exon 8 arrays.  相似文献   

4.
宋昉  金煜炜  王红  张玉敏  杨艳玲  张霆 《遗传》2005,27(1):53-56
为探讨中国苯丙酮尿症(PKU)人群中苯丙氨酸羟化酶(PAH)基因外显子7的突变特征,对147例PKU患儿的294个PAH基因外显子7以及两侧部分内含子序列,应用PCR-单链构象多态性(SSCP)分析及基因序列分析的方法进行了筛查和确定。共发现13种突变基因:G239D、R241C、R241fs、R243Q、G247S、G247V、R252Q、L255S、R261Q、M276K、E280G、P281L、Ivs7+2T>A,其中7 种突变基因在中国PKU人群首次发现:G239D 、R241fs 、G247S 、E280G、L255S、R261Q、P281L,前4种在国际上尚未见到报道,并已提交到国际PAH突变数据库(www.pahdb.mcgill.ca)。突变基因的总频率为30.61%(90 /294)。突变涉及了错义、缺失、移码和剪接位点4种突变类型。结果明确了PAH基因外显子7的突变种类和分布等特征,表明外显子7是中国人PAH基因突变的热点区域。 Abstract: To study mutation in exon 7 of the gene for the phenylalanine hydroxylase(PAH), the mutations in exon 7 and flanking sequence of PAH gene were detected by means of SSCP analysis and DNA sequencing, in 147 unrelated Chinese children with phynelketonuria and their parents. Thirteen different mutations, including 11 missense, 1 deletion and 1 splice mutation, were revealed in 90/294 mutant alleles (30.61%). The prevalent mutations were R243Q (22.8%) and Ivs7nt2t->a (2.38%). Seven novel mutations were identified: G239D, R241fsdelG, G247S, E280G, L255S, R261Q, P281L. These new mutations have not been described in Chinese PKU population and the first 4 mutants have not been reported and thus been submitted to www.pahdb,mcgill.ca. The missense was the most common type. The deletion and frameshift mutations were detected for the first time in Chinese PKU population. This study showed the mutation characteristics and their distribution in exon 7 of PAH gene and proved that the exon 7 was the hot region of PAH gene mutation in Chinese PKU population .  相似文献   

5.
BACKGROUND: Acute intermittent porphyria (AIP), an autosomal dominant inborn error, results from the half-normal activity of the heme biosynthetic enzyme hydroxymethylbilane synthase (EC 4.3.1.8; HMB-synthase). This disease is characterized by acute, life-threatening neurologic attacks that are precipitated by various drugs, hormones, and other factors. The enzymatic and/or biochemical diagnosis of AIP heterozygotes is problematic; therefore, efforts have focused on the identification of HMB-synthase mutations so that heterozygotes can be identified and educated to avoid the precipitating factors. In Spain, the occurrence of AIP has been reported, but the nature of the HMB-synthase mutations causing AIP in Spanish families has not been investigated. Molecular analysis was therefore undertaken in nine unrelated Spanish AIP patients. MATERIALS AND METHODS: Genomic DNA was isolated from affected probands and family members of nine unrelated Spanish families with AIP. The HMB-synthase gene was amplified by long-range PCR and the nucleotide sequence of each exon was determined by cycle sequencing. RESULTS: Three new mutations, a missense, M212V; a single base insertion, g4715insT; and a deletion/insertion, g7902ACT-->G, as well as five previously reported mutations (G111R, R116W, R149X R167W, and R173W) were detected in the Spanish probands. Expression of the novel missense mutation M212V in E. coli revealed that the mutation was causative, having <2% residual activity. CONCLUSIONS: These studies identified the first mutations in the HMB-synthase gene causing AIP in Spanish patients. Three of the mutations were novel, while five previously reported lesions were found in six Spanish families. These findings enable accurate identification and counseling of presymptomatic carriers in these nine unrelated Spanish AIP families and further demonstrate the genetic heterogeneity of mutations causing AIP.  相似文献   

6.
7.
8.
We have physically characterised a deletion mutant of the R plasmid R100 which has lost all of the antibiotic resistances, including chloramphenicol resistance (Cmr), coded by its IS1-flanked r-determinant. The deletion was mediated by one of the flanking IS1 elements and terminates within the carboxyl terminus of the Cmr gene. DNA sequence analysis showed that the mutated gene would produce a protein 20 amino acids longer than the wild-type due to fusion with an open reading frame in the IS element. Surprisingly for a deletion mutation, rare, spontaneous Cmr revertants could be recovered. Two of the four revertants studied had frame shifts due to the insertion of a single AT base pair at the same position; the revertants would code for a protein five amino acids shorter than the wild-type. The other two revertants had acquired duplications of the 34-bp inverted terminal repeat sequences of the IS1 element and would direct the synthesis of a protein six amino acids longer than the wild-type. The reverted Cmr markers were still capable of transposition. These observations suggest a role for point mutations and small DNA rearrangements in the formation of new gene organisations produced by mobile genetic elements.  相似文献   

9.
《Genomics》1999,55(1):21-27
We report the precise mapping and characterization of the genomic structure of the human homolog of the rat gene for the nucleolar protein NAP57, which has been reported to be responsible for X-linked dyskeratosis congenita (DKC). This single-copy gene, now called DKC, is transcribed from a CpG island 60 kb centromeric to the factor VIII gene in distal Xq28 and lies tail to tail with the palmitoylated erythrocyte membrane protein gene, MPP1. DKC comprises 15 exons spanning at least 16 kb and is transcribed into a widely expressed 2.6-kb message. Several functional motifs of DKC are assigned to coding sequences specified by individual exons. Analysis of normal female DNA revealed the presence of two polymorphisms in the DKC exons, while mutation analysis of a DKC patient identified a novel single amino acid missense mutation in exon 4. The latter together with exon 3 contain five of the six missense mutations reported so far in the DKC gene.  相似文献   

10.
We have examined the Finnish hemophilia A population for factor VIII gene mutations. This study included 83 unrelated patients and revealed 10 mutations associated with hemophilia. Using cloned cDNA, genomic, and oligonucleotide probes, we have identified three classes of mutations: five mutations causing the loss of TaqI restriction sites, a point mutation resulting in a new TaqI site, and four partial gene deletions. Although exons 5 and 6 were involved in three of the four partial gene deletions, the extent of the DNA lost differs in each case. The fourth deletion was located entirely within intron 1 and segregated with the disease in a large hemophilia pedigree. There was no history of hemophilia in eight of the 10 families. The origin of the mutation was determined in six of these pedigrees, two of which showed evidence for maternal mosaicism.  相似文献   

11.
Primary hyperoxaluria type II (PH2) is a rare disease characterized by the absence of an enzyme with glyoxylate reductase, hydroxypyruvate reductase, and D-glycerate dehydrogenase activities. The gene encoding this enzyme (GRHPR) has been characterized, and a single mutation has been detected in four PH2 patients. In this report, we have identified five novel mutations. One nonsense mutation (C295T) results in a premature stop codon at codon 99. A 4-bp deletion mutation has been found in the 5' consensus splice site of intron D, resulting in a predicted splicing error. Three missense mutations have been detected, including a missense transversion (T965G) in exon 9 (Met322Arg), a missense transition (G494A) in the putative co-factor binding site in exon 6 (Gly165Asp), and a substitution of an adenosine for a guanine in the 3' splice site of intron G. The functional consequences of the missense transversion and transition mutations have been investigated by transfection of cDNA encoding the mutated protein into COS cells. Cells transfected with either mutant construct have no enzymatic activity, a finding that is not significantly different from the control (empty) vector (P<0.05). These results further confirm that mutations in the GRHPR gene form the genetic basis of PH2. Ten of the 11 patients that we have genotyped are homozygous for one of the six mutations identified to date. Because of this high proportion of homozygotes, we have used microsatellite markers in close linkage with the GRHPR gene to investigate the possibility that the patients are the offspring of related individuals. Our data suggest that two thirds of our patients are the offspring of either closely or distantly related persons. Furthermore, genotyping has revealed the possible presence of a founder effect for the two most common mutations and the location of the gene near the marker D9S1874.  相似文献   

12.
We have obtained via DNA sequence analysis a spectrum of 174 spontaneous mutations occurring in the lac I gene of Escherichia coli. The spectrum comprised base substitution, frameshift, deletion, duplication and insertion mutations, of which the relative contributions to spontaneous mutation could be estimated. Two thirds of all lacI mutations occurred in the frameshift hotspot site. An analysis of the local DNA sequence suggested that the intensity of this hotspot may depend on structural features of the DNA that extend beyond those permitted by the repeated tetramer at this site. Deletions comprised the largest non-hotspot class (37%). They could be divided into two subclasses, depending on whether they included the lac operator sequence; the latter was found to be a preferred site for deletion endpoints. Most of the deletions internal to the lacI gene were associated with the presence of directly or invertedly repeated sequences capable of accounting for their endpoints. Base substitutions comprised 34% of the non-hotspot events. Unlike the base substitution spectrum obtained via nonsense mutations, G . C----A . T transitions do not predominate. A new base substitution hotspot was discovered at position +6 in the lac operator; its intensity may reflect specific features of the operator DNA. IS1 insertion mutations contributed 12% of the non-hotspot mutations and occurred dispersed throughout the gene in both orientations. Since the lacI gene is not A + T-rich, the contribution of IS1 insertion to spontaneous mutation in general might be underestimated. Single-base frameshift mutations were found only infrequently. In general, they did not occur in runs of a common base. Instead, their occurrence seemed based on the "perfection" of direct or inverted repeats in the local DNA sequence. Three (tandem) duplication events were recovered. No repeated sequences were found that might have determined their endpoints.  相似文献   

13.
A total of 59 cytocidal (cyt) mutants were isolated from adenovirus 2 (Ad2) and Ad5. In contrast to the small plaques and adenovirus type of cytopathic effects produced by wild-type cyt+ viruses, the cyt mutants produced large plaques, and the cytopathic effect was characterized by marked cellular destruction. cyt mutants were transformation defective in established rat 3Y1 cells. cyt+ revertants and cyt+ intragenic recombinants recovered fully the transforming ability of wild-type viruses. Thus, the cyt gene is an oncogene responsible for the transforming function of Ad2 and Ad5. Genetic mapping in which we used three Ad5 deletion mutants (dl312, dl313, and dl314) as reference deletions located the cyt gene between the 3' ends of the dl314 deletion (nucleotide 1,679) and the dl313 deletion (nucleotide 3,625) in region E1B. Restriction endonuclease mapping of these recombinants suggested that the cyt gene encodes the region E1B 19,000-molecular-weight (175R) polypeptide (nucleotides 1,711 to 2,236). This was confirmed by DNA sequencing of eight different cyt mutants. One of these mutants has a single missense mutant, two mutants have double missense mutations, and five mutants have nonsense mutations. Except for one mutant, these point mutations are not located in any other known region E1B gene. We conclude that the cyt gene codes for the E1B 19,000-molecular-weight (175R) polypeptide, that this polypeptide is required for morphological transformation of rat 3Y1 cells, and that simple amino acid substitutions in the protein can be sufficient to produce the cyt phenotype.  相似文献   

14.
Citrullinemia is an autosomal recessive disease caused by a genetic deficiency of argininosuccinate synthetase. In order to characterize mutations in Japanese patients with classical citrullinemia, RNA isolated from 10 unrelated patients was reverse-transcribed, and cDNA amplified by PCR was cloned and sequenced. The 10 mutations identified included 6 missense mutations (A118T, A192V, R272C, G280R, R304W, and R363L), 2 mutations associated with an absence of an exon 7 or exon 13, 1 mutation with a deletion of the first 7 bp in exon 16 (which might be caused by abnormal splicing), and 1 mutation with an insertion of 37 bp within exons 15 and 16 in cDNA. The insertion mutation and the five missense mutations (R304W being excluded) are new mutations described in the present paper. These are in addition to 14 mutations (9 missense mutations, 4 mutations associated with an absence of an exon in mRNA, and 1 splicing mutation) that we identified previously in mainly American patients with neonatal citrullinemia. Two of these 20 mutations, a deletion of exon 13 sequence and a 7-bp deletion in exon 16, were common to Japanese and American populations from different ethnic backgrounds; however, other mutations were unique to each population. Furthermore, the presence of a frequent mutation--the exon 7 deletion mutation in mRNA, which accounts for 10 of 23 affected alleles--was demonstrated in Japanese citrullinemia. This differs from the situation in the United States, where there was far greater heterogeneity of mutations.  相似文献   

15.
Chen Q  Chen Y  Qi Y  Hao L  Tang S  Xiao X 《Mutation research》2008,644(1-2):11-16
Carbadox, a quinoxaline 1,4-dioxide derivative, is a known mutagen with its functional mechanism yet to be well defined. In the present study we used a shuttle vector assay in vitro to uncover the functional details of carbadox-induced mutagenesis in mammalian cells. The plasmid DNA of a shuttle vector pSP189 was treated with different doses of carbadox at 37 degrees C for 1 or 2h with or without the presence of S9. The target gene SupF in the plasmid was sequenced after replication in Vero cells followed by amplification in Escherichia coli MBM7070 to evaluate mutation frequency. DNA sequencing analysis of recovered carbadox-induced mutations revealed 76.3% single base substitution, 7.9% single base insertion, 10.5% single base deletion and 5.3% large fragments deletion. All single base substitutions occurred at G:C base pairs, among which transversion and transition occurred at a 2:1 ratio. The mutations did not occur randomly in the supF gene, but had sequence specificity and hotspots instead: most substitutions were detected at the nucleotide N in a 5'-NNTTNN-3' sequence; 75% of base insertions were seen in the 5'-TCC-3' sequence; whereas all large fragments deletions occurred in the 5'-ANGGCCNAAA-3' sequence. Nucleotide 129, 141 and 155 in the supF gene of plasmid pSP189 were identified as the hotspots for carbadox-induced mutations that accounted for 65% of all single base substitutions. We conclude that carbadox and its metabolites induce sequence-specific DNA mutations at high frequencies, therefore its safe usage in animal husbandry should be seriously considered.  相似文献   

16.
To explore the characteristics of DNA mismatch repair gene mutations in Chinese patients with hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome, the MLH1 and MSH2 genes from probands of 76 HNPCC families were sequenced. By doing so, two frame-shift mutations, three splice-site mutations and fourteen missense mutations (thirteen missense mutations and one nonsense mutation) were identified in the MLH1 gene. In addition, one splice-site mutation and six missense mutations were detected in the MSH2 gene. None of these mutations were detected in 100 matched healthy controls. The remaining mutation-negative cases were subjected to large fragment deletion analysis using multiplex ligation-dependent probe amplification (MLPA). By doing so, five large fragment deletions were detected in the MSH2 gene. No large fragment deletions were detected in the MLH1 gene. We conclude that the MLH1 and MSH2 genes in Chinese HNPCC families exhibit broad mutation spectra.  相似文献   

17.
The molecular basis of familial chylomicronemia (type I hyperlipoproteinemia), a rare autosomal recessive trait, was investigated in six unrelated individuals (five of Spanish descent and one of Northern European extraction). DNA amplification by polymerase chain reaction (PCR) followed by single strand conformation polymorphism (SSCP) analysis allowed rapid identification of the underlying mutations. Six different mutant alleles (three of which are previously undescribed) of the gene encoding lipoprotein lipase (LPL) were discovered in the five LPL-deficient patients. These included an 11 bp deletion in exon 2, and five missense mutations: Trp 86 Arg (exon 3), His 136 Arg (exon 4), Gly 188 Glu (exon 5), Ile 194 Thr (exon 5), and Ile 205 Ser (exon 5). The Trp 86 Arg mutation is the only known missense mutation in exon 3. The other missense mutations lie in the highly conserved "central homology region" in close proximity with the catalytic site of LPL. These and other previously reported missense mutations provide insight into structure/function relationships in the lipase family. The missense mutations point to the important role of particular highly conserved helices and beta-strands in proper folding of the LPL molecule, and of certain connecting loops in the catalytic process. A nonsense mutation (Arg 19 Term) in the gene encoding apolipoprotein C-II (apoC-II), the cofactor of LPL, was found to underlie chylomicronemia in the sixth patient who had normal LPL but was apoC-II-deficient.  相似文献   

18.
19.
Hereditary multiple exostoses (HME), a dominantly inherited genetic disorder characterized by multiple cartilaginous tumors, is caused by mutations in members of the EXT gene family, EXT1 or EXT2. The corresponding gene products, exostosin-1 (EXT1) and exostosin-2 (EXT2), are type II transmembrane glycoproteins which form a Golgi-localized heterooligomeric complex that catalyzes the polymerization of heparan sulfate (HS). Although the majority of the etiological mutations in EXT are splice-site, frameshift, or nonsense mutations that result in premature termination, 12 missense mutations have also been identified. Furthermore, two of the reported etiological missense mutations (G339D and R340C) have been previously shown to abrogate HS biosynthesis (McCormick et al. 1998). Here, a functional assay that detects HS expression on the cell surface of an EXT1-deficient cell line was used to test the remaining missense mutant exostosin proteins for their ability to rescue HS biosynthesis in vivo. Our results show that EXT1 mutants bearing six of these missense mutations (D164H, R280G/S, and R340S/H/L) are also defective in HS expression, but surprisingly, four (Q27K, N316S, A486V, and P496L) are phenotypically indistinguishable from wild-type EXT1. Three of these four "active" mutations affect amino acids that are not conserved among vertebrates and invertebrates, whereas all of the HS-biosynthesis null mutations affect only conserved amino acids. Further, substitution or deletion of each of these four residues does not abrogate HS biosynthesis. Taken together, these results indicate that several of the reported etiological mutant EXT forms retain the ability to synthesize and express HS on the cell surface. The corresponding missense mutations may therefore represent rare genetic polymorphisms in the EXT1 gene or may interfere with as yet undefined functions of EXT1 that are involved in HME pathogenesis.  相似文献   

20.
Qin K  Rosenfield RL 《Steroids》2011,76(1-2):135-139
Background/AimHexose-6-phosphate dehydrogenase (H6PD) inactivating mutations cause cortisone reductase deficiency, which manifests with hyperandrogenism unexplained by commonly used tests and, thus, mimics polycystic ovary syndrome (PCOS). The aim of this study was to screen for mutations of H6PD gene in PCOS patients with biochemical hyperandrogenemia.MethodsDirect DNA sequencing of the entire H6PD coding sequence was performed in 74 PCOS patients and 31 healthy controls. Results were confirmed by PCR-restriction fragment length polymorphism assay to determine the genotypic frequency of the variants.ResultsMultiple novel missense variants were detected in the study. Two exon 2 variants (acccaggc deletion proximal to the start codon and D151A) and two exon 5 variants (R453Q and P554L) were common, occurring in 23.8%, 17.1%, 35.2%, and 16.1%, respectively. There was significant linkage disequilibrium between the exon 2 and exon 5 variants. No significant differences were observed in the genotype, allele distributions, or adrenal function tests of the variants between cases and control groups. We did not detect any reported inactivating mutations in our study.ConclusionAlthough the H6PD gene is very polymorphic and missense variants are common, coding variants rarely (<1.5%) are responsible for hyperandrogenemic PCOS. We suggest that genetic studies be reserved for patients with dexamethasone-suppressible adrenal hyperandrogenism who have a discrepancy between urinary 17α-hydroxycorticoid and cortisol excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号