首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One isoform of the regulatory subunit of type II cAMP-dependent protein kinase (R-II51; Mr = 51,000) and its electrophoretic variants (R-II51.5 and R-II52; Mr = 51,500 and 52,000, respectively) are selectively induced by estradiol and follicle-stimulating hormone (cAMP) in rat ovarian granulosa cells. To ascertain the amino acid sequence of R-II51 and to gain insight into the molecular events regulating the intracellular content of ovarian follicular R-II51, we constructed a lambda gt11 cDNA expression library from poly(A)+ RNA of hormone-primed rat granulosa cells. A 1.5-kilobase (kb) cDNA insert, isolated from a plaque-purified R-II antibody positive bacteriophage clone, selectively bound R-II51 mRNA as demonstrated by analysis of the hybrid-selected translation product. Restriction maps and sequence analyses of the 1.5-kb cDNA insert and of the 1.8- and 2.2-kb cDNA inserts from two additional clones showed overlapping sequences which span a region of 3065 nucleotides in size. The 1.5- and 1.8-kb cDNA inserts each contained poly(A) addition signals (1508 and 1761 nucleotides, respectively), terminal poly(A) sequences, and the entire coding region for R-II51 (1204 nucleotides) except for a small number of nucleotides at the 5' end. The 2.2-kb cDNA insert contained 394 nucleotides of the coding region a long 3' untranslated region and two more poly(A) addition signals (3041 and 3059 nucleotides). An amino acid microsequence surrounding the autophosphorylation site of pure rat ovarian R-II51 agreed with the amino acid sequence deduced from the nucleotide sequence of the cDNA. Northern blot analyses demonstrated two major mRNA species (1.8 and 3.2 kb in size) in hormone-primed rat ovaries which were approximately 10- and 50-fold greater than the R-II mRNA content in rat brain and rat heart, respectively. Southern blot analysis of rat liver DNA indicated that a single gene codes for R-II51 mRNA. Structural differences among rat ovarian R-II51, rat heart R-II54, and the known amino acid sequences of bovine R-II and R-I subunits also indicate that the rat ovarian R-II51 subunit is the product of a distinct gene.  相似文献   

2.
A 1.5 kilobase (kb) cDNA clone containing the entire coding region for a regulatory subunit of type I cAMP-dependent protein kinase (RI) was isolated from a human testis cDNA library. The cDNA clone encodes a protein of 381 amino acids that shows 98% and 97% homology to the bovine skeletal muscle RI and rat brain RI, respectively. Northern blot analysis demonstrates two major mRNA-species (1.5 and 3.0 kb) in human testis and one mRNA-species (3.0 kb) in human T-lymphocytes.  相似文献   

3.
We report here the isolation and sequence of a cDNA for the type II regulatory subunit of the cAMP-dependent protein kinase (cAMP-PK) from a lambda gt-11 cDNA library derived from a porcine epithelial cell line (LLC-PK1). The cDNA was detected by immunological screening using an affinity purified polyclonal antibody for bovine RII. DNA sequence analysis of the 467 bp EcoRI insert confirmed the identity of the clone, because the deduced amino acid sequence corresponded to the published sequence for the bovine RII protein. Northern analysis of total RNA from the LLC-PK1 cells indicated a single mRNA species of about 6.0 kb, probably derived from a single copy gene.  相似文献   

4.
5.
BACKGROUND: Cyclic AMP binding domains possess common structural features yet are diversely coupled to different signaling modules. Each cAMP binding domain receives and transmits a cAMP signal; however, the signaling networks differ even within the same family of regulatory proteins as evidenced by the long-standing biochemical and physiological differences between type I and type II regulatory subunits of cAMP-dependent protein kinase. RESULTS: We report the first type II regulatory subunit crystal structure, which we determined to 2.45 A resolution and refined to an R factor of 0.176 with a free R factor of 0.198. This new structure of the type II beta regulatory subunit of cAMP-dependent protein kinase demonstrates that the relative orientations of the two tandem cAMP binding domains are very different in the type II beta as compared to the type I alpha regulatory subunit. Each structural unit for binding cAMP contains the highly conserved phosphate binding cassette that can be considered the "signature" motif of cAMP binding domains. This motif is coupled to nonconserved regions that link the cAMP signal to diverse structural and functional modules. CONCLUSIONS: Both the diversity and similarity of cAMP binding sites are demonstrated by this new type II regulatory subunit structure. The structure represents an intramolecular paradigm for the cooperative triad that links two cAMP binding sites through a domain interface to the catalytic subunit of cAMP-dependent protein kinase. The domain interface surface is created by the binding of only one cAMP molecule and is enabled by amino acid sequence variability within the peptide chain that tethers the two domains together.  相似文献   

6.
The regulatory subunit of cAMP-dependent protein kinase designated RII beta (RII51) has previously been shown to be the product of a separate gene. This was accomplished by the molecular cloning of a partial cDNA clone estimated to lack 30-45 nucleotides of the 5' end of the coding region. We hereby report the isolation of a cDNA clone for RII beta from rat granulosa cells, extending 43 nucleotides further 5' compared with the previously published cDNA sequence, and from which the entire amino acid sequence (415 residues) of the rat RII beta protein can be deduced. A cAMP regulated mRNA of 3.2 kilobases (kb) for RII beta was detected by the isolated cDNA in rat Sertoli cells.  相似文献   

7.
Complementary DNA clones for the regulatory subunit RI beta of cAMP-dependent protein kinases were isolated from a human testis cDNA library using a mouse RI beta cDNA probe. One clone 2.4 kilobases (kb) in length contained an open reading frame of 1137 bases, and encoded a protein of 379 amino acids (excluding the initiator methionine). The human RI beta protein was one amino acid shorter than the corresponding protein in mouse and rat. The nucleotide similarity to mouse and rat sequences was 85.6% and 84.8%, respectively, while the amino acid similarity was 97.6% and 97.3%, respectively. Northern blot analyses revealed a 2.7 kb mRNA in human tissues and a 2.8 kb mRNA in mouse tissues. Both mouse and human RI beta mRNA were found to be expressed in most tissues, and not restricted to brain and testis as reported by others.  相似文献   

8.
An expression vector has been constructed for the type I regulatory subunit of cAMP-dependent protein kinase. A cDNA clone for the bovine RI-subunit has been inserted into pUC7. When Escherichia coli JM105 was transformed with this plasmid, R-subunit was expressed in amounts that approached 4 mg/liter. The expressed protein was visualized in total cell extracts by photolabeling with 8-azidoadenosine 3':5'-mono[32P]phosphate following transfer from sodium dodecyl sulfate-polyacrylamide gels to nitrocellulose. Expression of R-subunit was independent of isopropyl-beta-D-thiogalactopyranoside. R-subunit accumulated in large amounts only in the stationary phase of growth, and the addition of isopropyl-beta-D-thiogalactopyranoside during the log phase of growth actually blocked the accumulation of R-subunit. Maximum expression (20 mg/liter) was achieved when E. coli 222 was transformed with the RI-containing plasmid. E. coli 222 is a strain that contains two mutations; it is cya- and also has a mutation in the catabolite gene activator protein (crp) that enables the protein to bind to DNA in the absence of cAMP. The expressed RI-subunit was a soluble, dimeric protein, and no significant proteolysis was apparent in the cell extract. The purified RI-subunit bound 2 mol of cAMP/mol of R monomer, reassociated with C-subunit to form holoenzyme, and migrated as a dimer on sodium dodecyl sulfate-polyacrylamide gels in the absence of reducing agents. The expressed protein was also susceptible to limited proteolysis, yielding a monomeric cAMP-binding fragment having a molecular weight of 35,000. In all of these properties, the expressed protein was indistinguishable from RI purified from bovine tissue even though the R-subunit expressed in E. coli represents a fusion protein that contains 10 additional amino acids at the amino terminus that are provided by the lac Z' gene of the vector. This NH2-terminal sequence was confirmed by amino acid sequencing.  相似文献   

9.
The promoter and exon 1 of the regulatory subunit (RII beta) of type II cAMP-dependent protein kinase were isolated from a mouse genomic library. The 5'-flanking DNA lacked TATA and CAAT sites but contained GC rich regions typically found in constitutively expressed house keeping genes. Fusion gene constructs, containing RII beta 5'-flanking sequences and the bacterial CAT structural gene, were transfected into NB2a neuroblastoma cells and CHO cells. The NB2a cells expressed high levels of CAT activity. CHO cells expressed CAT activity at 5% of the level seen in the NB2a cells. Transfection of deletion constructs into both cell lines was used to define the core promoter and enhancer elements. The core promoter was situated between bp -291/-121. An enhancer element was located between bp -1426/-1018.  相似文献   

10.
The unfolding of the recombinant regulatory subunit of cAMP-dependent protein kinase I was followed by monitoring the intrinsic protein fluorescence. Unfolding proceeds in at least two stages. First, the quenching of fluorescence due to cAMP binding is abolished at relatively low levels of urea (less than 2 M) and is observed as an increase in intensity at 340 nm. The high-affinity binding of cAMP is retained in 3 M urea even though the quenching is lost. The second stage of unfolding, presumably representing unfolding of the polypeptide chain, is seen as a shift in lambda max from 340 to 353 nm. The midpoint concentration, Cm, for this process is 5.0 M. Cyclic AMP binding activity is lost at a half-maximal urea concentration of 3.5 M and precedes the shift in lambda max. Unfolding of the protein in the presence of urea was fully reversible; furthermore, the presence of excess levels of cAMP stabilized the regulatory subunit. A free energy value (delta GDH2O) of 7.1 +/- 0.2 kcal/mol was calculated for the native form of the protein when denaturation was induced with either urea or guanidine hydrochloride. Iodide quenching of tryptophan fluorescence was used to elucidate the number of tryptophan residues accessible during various stages of the unfolding process. In the native cAMP-bound form of the regulatory subunit, only one of the three tryptophans in the regulatory subunit is quenched by iodide while more than two tryptophans can be quenched with iodide in the presence of 3 M urea.  相似文献   

11.
Two isoforms of the regulatory subunit (R) of cAMP-dependent protein kinase (PKA), named R(myt1) and R(myt2), had been purified in our laboratory from two different tissues of the sea mussel Mytilus galloprovincialis. In this paper, we report the sequences of several peptides obtained from tryptic digestion of R(myt1). As a whole, these sequences showed high homology with regions of type I R subunits from invertebrate and also from mammalian sources, but homology with those of fungal and type II R subunits was much lower, which indicates that R(myt1) can be considered as a type I R isoform. This conclusion is also supported by the following biochemical properties: (1) R(myt1) was proved to have interchain disulfide bonds stabilizing its dimeric structure; (2) it failed to be phosphorylated by the catalytic (C) subunit purified from mussel; (3) it has a higher pI value than that of the R(myt2) isoform; and (4) it showed cross-reactivity with mammalian anti-RIbeta antibody.  相似文献   

12.
The regulatory subunit of type I cAMP-dependent protein kinase (RI) from rabbit skeletal muscle inhibited the activity of a low molecular weight phosphoprotein phosphatase. The inhibition was concentration and time dependent. A maximum inhibition, about 70%, was observed at 2 microM of RI with an apparent Ki of 0.8 microM. Inhibition was associated with a decrease in Vmax with no change in Km for substrate, phosphorylase a. On the other hand, cAMP-dependent protein kinase holoenzyme or its catalytic subunit was without any effect. The inhibition of phosphoprotein phosphatase by RI may be of physiological significance since the dissociation of cAMP-dependent protein kinase by cAMP would result in a simultaneous increase in the phosphorylation and decrease in the dephosphorylation rates of target proteins.  相似文献   

13.
Liver post-mitochondrial supernatant from diabetic rats showed a decrease in the [3H] cAMP binding activity which was associated with a decrease in the number of cAMP binding sites. On the other hand, the cAMP binding activity of nuclear fractions from diabetic rat liver was not significantly different than that of control. The cAMP binding activity of post-mitochondrial supernatant was further analyzed by using 8-azido-[32P] cAMP, a photoaffinity probe for cAMP binding sites. The diabetic supernatants showed a selective reduction in the photolabeling of a protein band representing the regulatory subunit of type I cAMP-dependent protein kinase without any appreciable change in the photolabeling of regulatory subunit of type II cAMP-dependent protein kinase.  相似文献   

14.
15.
Homogenous regulatory subunit from rabbit skeletal muscle cAMP-dependent protein kinase (isozyme I) was partially hydrolyzed with low (1 g/1300 g) or high (1 g/6 g) concentrations of trypsin. After treatment with low trypsin two main peptides (Mr = 35,000 and 12,000) were produced. The cAMP-binding activity (2 mol cAMP/mol of subunit monomer) was recovered in the monomeric Mr = 35,000 peptide. The ability of either fragment to inhibit catalytic subunit activity was lost. Treatment of the regulatory subunit with a high concentration of trypsin yielded three main fragments (Mr = 32,000, 16,000, and 6,000) which could be resolved by Sephadex G-75 and purified further on DEAE-cellulose columns. One of the peptides (Mr = 32,000) bound 2 mol cAMP/mol fragment. The Mr = 16,000 fragment was very labile and bound cAMP with an undetermined stoichiometry. Cyclic AMP dissociation curves for the native regulatory subunit and its Mr = 32,000 component were similar and suggested the presence of two nonidentical binding sites in each monomer. Using the same procedure, the Mr = 16,000 fragment or homogenous cGMP-dependent protein kinase appeared to contain a single type of binding site. Purified Mr = 32,000 fragment was readily converted to the Mr = 16,000 fragment using high trypsin as assessed by protein bands on SDS-disc gels or by following transfer of radioactivity from Mr = 32,000 peptide covalently labeled with 8-N3-[32P] cAMP to radiolabeled Mr = 16,000 fragment. The smallest regulatory subunit fragment (Mr = 6,000) did not bind cAMP, but was dimeric and could be part of the dimerization domain in the native protein. A model is presented to explain the possible structural-functional relationships of the regulatory subunit.  相似文献   

16.
The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  相似文献   

17.
The two protomers of the purified regulatory subunit from porcine cAMP-dependent protein kinase I have been shown to be covalently cross-linked by interchain disulfide bonding. Limited proteolysis which cleaves the polypeptide chain into two fragments demonstrated that the disulfide bonding was associated exclusively with the fragment that corresponded to the NH2-terminal region of the polypeptide chain. This NH2-terminal fragment accounted for approximately 15 to 20% of the molecule. The disulfide bonding was further characterized by alkylating the cysteines in the native regulatory subunit. Following oxidation with performic acid, each regulatory subunit contained 7 cysteic acid residues; however, under denaturing conditions, but without prior reduction, only 5 cysteine residues could be alkylated with iodoacetic acid. Following limited proteolysis, all five of these cysteines were associated with the larger COOH-terminal, cAMP binding domain. In contrast, if the denatured subunit was first reduced prior to alkylation, all 7 cysteine residues were alkylated. The 2 cysteines that were only accessible to alkylation after prior reduction were both associated with the NH2-terminal end of the polypeptide chain ultimately with a 5,400 peptide. Alkylation of the isolated, denatured NH2-terminal domain with iodoacetic acid resulted in no covalent modification unless the fragment was first reduced with dithiothreitol. The NH2-terminal and COOH-terminal domains were shown to be linked by a region of the polypeptide chain that is rich in both proline and arginine. It is the arginine-rich site that is readily prone to proteolytic cleavage.  相似文献   

18.
The regulatory subunit (R-II) of cAMP-dependent protein kinase type II is induced in rat ovarian granulosa cells by the synergistic actions of estradiol and follicle-stimulating hormone. The R-II from rat ovaries was compared with R-II from rat heart, rat brain, bovine heart, and bovine brain using immunological methods, 8-N3[32P]cAMP photoaffinity labeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three isoforms of R-II were identified in rat ovarian cell extract (R-II54 Mr = 54,000, R-II52 Mr = 52,000, R-II51 Mr = 51,000), two isoforms of R-II in rat brain cell extract (Mr = 54,000, Mr = 52,000), and one isoform of R-II in rat heart cell extract (Mr = 54,000). Rat ovarian R-II54, heart R-II, and brain R-II (Mr = 54,000) were recognized by antiserum against rat heart R-II, whereas rat ovarian R-II52/R-II51 and rat brain R-II (Mr = 52,000) were not. In contrast, an antiserum raised against bovine heart R-II recognized all three isoforms of ovarian R-II as well as the lower molecular weight form of rat brain R-II. Ovarian types R-II52 and R-II51 but not R-II54 were increased selectively in granulosa cells by estradiol and follicle-stimulating hormone. In addition: 1) ovarian R-II52/51 subunits were purified to homogeneity and shown to recombine with C subunit from bovine heart to form a cAMP-dependent protein kinase; 2) pure R-II52/51 were not interconvertible to a higher molecular weight form by C subunit-dependent phosphorylation; 3) pure rat heart R-II (Mr = 54,000) and ovarian R-II52/51 exhibited distinct differences based on one- and two-dimensional peptide mapping; and 4) by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis pure R-II52/51 were resolved as three (rather than two) isoelectric variants which were clearly different from pure rat heart R-II54. Thus, the hormone-regulated form of R-II in rat ovarian granulosa cells appears to represent a gene product distinct from R-II54 in rat heart.  相似文献   

19.
The type I regulatory subunit (R-I) of rat brain cAMP-dependent protein kinase was expressed in E. coli and site-directed mutagenesis was used to substitute amino acids in the putative cAMP-binding sites. The wild-type recombinant R-I bound 2 mol of cAMP/mol subunit, while two mutant R-Is with a single amino acid substitution in one of the two intrachain cAMP-binding sites (clone N153:a glutamate for Gly-200, and clone C254:an aspartate for Gly-324) bound 1 mol of cAMP/mol subunit. When these two substitutions were made in one mutant, cAMP did not bind to this mutant, indicating that binding of cAMP to N153 or C254 was to their nonmutated sites. Competition experiments with site-selective analogs and dissociation of bound cAMP from mutant R-Is provided evidence for strong intrachain interactions between the two classes of cAMP-binding sites in R-I.  相似文献   

20.
The type I and type II regulatory subunits of cAMP-dependent protein kinase can be distinguished by autophosphorylation. The type II regulatory subunits have an autophosphorylation site at a proteolytically sensitive hinge region, while the type I regulatory subunits have a pseudophosphorylation site. Only holoenzyme formed with type I regulatory subunits has a high affinity binding site for MgATP. In order to determine the functional consequences of regulatory subunit phosphorylation on interaction with the catalytic subunit, an autophosphorylation site was introduced into the type I regulatory subunit using recombinant DNA techniques. When Ala97 at the hinge region of the type I regulatory subunit was replaced with Ser, the regulatory subunit became a good substrate for the catalytic subunit. Stoichiometric phosphorylation occurred exclusively at Ser97. Radioactivity was incorporated primarily into the recombinant regulatory subunit when catalytic subunit and [gamma-32P]ATP were added to the total bacterial extract. Phosphorylation of the mutant regulatory subunit also occurred readily following polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose. Phosphorylation occurred as an intramolecular event in the absence of cAMP indicating that the hinge region of the regulatory subunit occupies the substrate recognition site of the catalytic subunit in the holoenzyme complex. Holoenzyme formed with both the wild type and mutant regulatory subunits was susceptible to dissociation in the presence of high salt; however, only the native holoenzyme was stabilized by MgATP. In contrast to the wild type holoenzyme, the affinity of the mutant holoenzyme for cAMP was not reduced in the presence of MgATP. Holoenzyme formation also was not facilitated by MgATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号