首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two D-glucosyltransferases are produced by Streptococcus sobrinus C211. One (GTF-S) catalyzes the conversion of sucrose into soluble alpha-(1----6)-linked alpha-(1----3)-branched D-glucans, and the other (GTF-I), of sucrose into alpha-(1----3)-linked alpha-(1----6)-branched D-glucans. These enzymes were studied by using maltose, isomaltose, and nigerose as inhibitors. Maltose and isomaltose were found to be competitive inhibitors of GTF-S, whereas nigerose has no effect on GTF-S activity. The Ki values for maltose and isomaltose were determined to be 11 and 15mM, respectively. Maltose, isomaltose, and nigerose competitively inhibit GTF-I. The Ki values for these inhibitors were found to be approximately 0.8, 2.5, and 15mM, respectively. The inhibitory properties of each disaccharide are interpreted in terms of conformational comparisons with sucrose.  相似文献   

2.
Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotometry. 4-[(4-Methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 microM for the cresolase activity, and 1.4, 5, 13 and 25 microM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (alpha > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition.  相似文献   

3.
The sterols 7 alpha-hydroxycholest-4-en-3-one (I) and 5 alpha-cholestane-3 alpha,7 alpha-diol (II) are competitive inhibitors for rabbit hepatic microsomal preparations of steroid 12 alpha-hydroxylase with apparent Ki values of 56 and 93 microM, respectively. To ascertain the optimum structure for a substrate with maximal enzymic activity, nine sterols or steroidal acids containing the 7 alpha-hydroxy-4-en-3-one or 3 alpha,7 alpha-dihydroxy-5 alpha configuration were prepared and studied as inhibitors with enzyme preparations in the presence of NADPH, oxygen and appropriate cofactors. Although each of these compounds exhibited competitive inhibition, the best inhibitor for sterol (I) was 7 alpha,25-dihydroxycholest-4-en-3-one (IV) (Ki 36 microM). Steroidal acids (3-oxo-7 alpha-hydroxychol-4-enoic acid and 3-oxo-7 alpha-hydroxy-4-cholene-24-carboxylic acid) were poor inhibitors (Ki 1080 and 654 microM, respectively). For sterol (II) the best inhibitors were sterol (IV) (Ki 35 microM) and 5 alpha-cholestane-3 alpha,7 alpha,25-triol (VIII) (Ki 45 microM). The 12 alpha-hydroxylated products of sterols (I) and (IV) were less tightly bound to the enzyme (Ki 88 and 98 microM, respectively) in the presence of sterol (II). Allochenodeoxycholic acid (Ki 495 microM) was not a good inhibitor for sterol (II). 12 alpha-Hydroxylated products of sterols (IV) and (VIII) were isolated from larger scale incubations, separated by HPLC and identified by mass spectrometry.  相似文献   

4.
A total of 13 phosphonate analogues of bis(5'-adenosyl) tetraphosphate (AppppA) have been tested as substrates and inhibitors of the asymmetrically cleaving bis(5'-nucleosidyl) tetraphosphatase (NppppNase) from Artemia and the symmetrically cleaving NppppNase from Escherichia coli. With the Artemia enzyme, the substrate efficiency of beta beta'-substituted compounds decreased with decreasing substituent electronegativity (O greater than CF2 greater than CHF greater than CCl2 greater than CHCl greater than CH2) such that AppCF2ppA and AppCH2ppA were hydrolyzed at 70% and 2.5% of the rate of AppppA, respectively. These compounds were competitive inhibitors of this enzyme with Ki values that generally also decreased with electronegativity from 12 microM for AppCF2ppA to 0.4 microM for AppCH2ppA (Km for AppppA = 33 microM). AppCH = CHppA and AppCH2CH2ppA were neither effective substrates nor inhibitors of the Artemia enzyme. Alpha beta,alpha'beta'-Disubstituted analogues were generally less effective inhibitors with Ki values ranging from 23 microM (ApCH2ppCH2pA) to greater than 1.5 mM (ApCH2CH2ppCH2CH2pA). However, they displayed a low and unexpected rate of symmetrical cleavage by the Artemia enzyme: e.g., ApCHFppCHFpA yielded ApCHFp at 3% of the rate of AppppA breakdown. Both sets of analogues were also competitive inhibitors of the E. coli NppppNase with Ki values ranging from 7 microM (AppCH2ppA) to 250 microM (ApCH2CH2ppCH2CH2pA) (Km for AppppA = 28 microM). The only alpha beta,alpha'beta'-disubstituted analogue to be hydrolyzed by the E. coli enzyme was ApCF2ppCF2pA at 0.2% of the rate of AppppA; however, several of the beta beta'-substituted compounds showed a limited degree of asymmetrical cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Derivatives of ferrocene (dicyclopentadienyliron) (Fc) were examined as active site directed inhibitors of type I procollagen N-proteinase, the enzyme that cleaves the NH2-terminal propeptides from type I procollagen. The compounds were shown here to be reversible, competitive inhibitors of the enzyme. The effectiveness of the Fc inhibitors varied with modification of the cyclopentadienyl (cp) rings. The monocarboxylic acid (I) and the 1,1'-dicarboxylic acid (II) derivatives of Fc inhibited 50% of the enzymic activity (I50) at concentrations of 1.0 and 0.5 mM, respectively. The Ki values were 0.3 mM for both I and II. Derivatization of the carbonyl alpha to the cp ring of compound I (FcCOCH2CH2COOH, III) increased the inhibitory activity (I50 = 0.100 mM; Ki = 0.065 mM). Removal of the carbonyl alpha to the cp ring of III did not improve inhibitory activity: FcCH2CH2COOH, I50 = 2 mM; FcCH = CHCOOH, I50 = 1.5 mM. The active inhibitory species apparently contained iron in the 3+ valence state since two ferrocenium derivatives were very effective inhibitors: ferrocenium tetrachloroferrate, IV (I50 = 0.030 mM; Ki = 0.004 mM), and carboxyferrocenium hexafluorophosphate, V (I50 less than 0.1 mM; Ki less than 0.05 mM). In addition, reduction of III with ascorbic acid abolished its inhibitory activity. Compounds I and III stabilized the enzyme to heat denaturation in the absence of exogenous calcium; compound IV did not stabilize the enzyme. Further observations indicated that Fc derivatives were specific inhibitors of procollagen N-proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Starting from sucrose, 2,3,1',3',4',6'-hexa-O-benzoyl-6-deoxy-6-iodosucrose (1) was synthesized. Reaction of 1 with sulfuryl chloride in pyridine gave 2,3,1',3',4',6'-hexa-O-benzoyl-4-chloro-4,6-dideoxy-6-iodogalactosucr ose (2). Compound 2 was treated with tributyltin hydride in toluene in the presence of a radical initiator, alpha, alpha-azobis(isobutanonitrile) (AIBN), to remove iodine and chlorine groups and give hexa-O-benzoyl-4,6-dideoxysucrose. Benzoyl groups were removed by sodium methoxide in methanol to give 4,6-dideoxysucrose. Sucrose was modified at carbon atom 3, carbon atom 4, or carbon atoms 4 and 6, and these analogs were tested as inhibitors of the D-glucansucrases (D-glucosyltransferases) of Streptococcus mutans 6715 and Leuconostoc mesenteroides B-512F. Sucrose analogs used in this study are 4-deoxysucrose and 4-chloro-4-deoxygalactosucrose with S. mutans 6715 D-glucansucrases (GTF-S and GTF-I), and 3-deoxysucrose, 4-deoxysucrose, 4-chloro-4-deoxygalactosucrose, 6-deoxysucrose, and 4,6-dideoxysucrose with L. mesenteroides B-512F D-glucansucrase. The data indicate that 3-deoxysucrose, 4-deoxysucrose, and 4-chloro-4-deoxygalactosucrose are weak noncompetitive inhibitors for B-512F dextransucrase, with Ki values of 530, 201, and 202mM respectively. For the same enzyme, 6-deoxysucrose was a strong competitive inhibitor, with Ki of 1.60mM, and 4,6-dideoxysucrose was a good competitive inhibitor, with Ki of 20.3mM. 4-Deoxysucrose was a weak noncompetitive inhibitor for both GTF-I and GTF-S, with Ki values of 672 and 608mM, respectively. 4-Chloro-4-deoxygalactosucrose was also a weak noncompetitive inhibitor for GTF-I and GTF-S with Ki values of 391 and 308mM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Hepatic cholesterol-epoxide hydrolase is a microsomal enzyme which appears to be catalytically distinct from the epoxide hydrolase responsible for the catabolism of a wide variety of aromatic and aliphatic epoxides. The diastereomeric forms of cholesterol epoxide, cholesterol 5 alpha,6 alpha-, and cholesterol 5 beta,6 beta-epoxides are converted to cholestane-3 beta,5 alpha,6 beta-triol with equal facility. Kinetic analysis of cholesterol-epoxide hydrolase demonstrated that both diastereomers bind to a common catalytic site. Apparent Km values of 3.69 and 4.42 microM were derived for cholesterol 5 alpha,6 alpha- and cholesterol 5 beta,6 beta-epoxide, respectively. In addition, enzyme activity with both diastereomers was product-inhibited by cholestanetriol through a competitive mechanism with the apparent Ki for cholestanetriol being 10.8 and 6.8 microM against cholesterol alpha- and beta-epoxides, respectively. This inhibitory effect of cholestanetriol may account for the difference observed in the hydration rates for the cholesterol epoxide isomers when they are incubated together in the presence of liver microsomes. Inhibitors of epoxide hydrolase were studied, and three oxidation products were found to be particularly effective against cholesterol-epoxide hydrolase while producing no significant inhibition of styrene-epoxide hydrolase. These inhibitors were 7-ketocholesterol, 6-ketocholestanol, and 7-ketocholestanol, the latter displaying an apparent Ki lower than the Km for either cholesterol epoxide isomer. None of the xenobiotic epoxide hydrolase inhibitors or activators studied affected cholesterol-epoxide hydrolase activity.  相似文献   

8.
Interaction of soybean beta-amylase with glucose   总被引:1,自引:0,他引:1  
The interaction of soybean beta-amylase with glucose was investigated by inhibition kinetics studies and spectroscopic measurements. The inhibition type, inhibitor constant (Ki) and dissociation constant (Kd) of beta-amylase-glucose complex were dependent on pH. At pH 8.0, glucose behaved as a competitive inhibitor (Ki = 34 mM). Binding of glucose produced a characteristic difference spectrum and a change of circular dichroism (CD) at pH 8.1. By using difference absorbance at 292 nm and difference ellipticity at 290 nm, Kd values for beta-amylase-glucose complex were determined to be 45 and 46 mM, respectively. In contrast to pH 8.0, glucose behaved as a mixed-type inhibitor (Ki = 320 mM) at pH 5.4. The Kd values obtained from the difference spectrum were increased by lowering the pH from 8. The pH dependence of the Ki and Kd values suggested that one ionizable group of pK = 8.0, which is shifted to 6.9 by the binding of glucose, controls the binding affinity of glucose. The binding of glucose competed with the binding of cyclohexaamylose and maltose at pH 8.0. The modification of SH groups of the enzyme affected the binding of glucose but did not affect the binding of maltose or cyclohexaamylose at pH 8.0. It was concluded from these results that the binding site of glucose is different from that of maltose and cyclohexaamylose. Presumably, glucose may bind to the subsite 1 of soybean beta-amylase.  相似文献   

9.
The inhibition of beef heart mitochondrial F1 by exchange-inert metal-nucleotide complexes was examined. Mono- and bidentate Cr(NH3)4ATP were found to be mixed noncompetitive inhibitors of F1-catalyzed ATP hydrolysis (values of Ki = 0.5 and 0.1 mM; values of alpha = 0.2 and 24, respectively). Rh(H2O)nATP was also found to be a mixed noncompetitive inhibitor of F1-catalyzed ATP hydrolysis (Ki = 0.3 mM, alpha = 0.7). These compounds were used in a series of dual inhibition experiments, along with mono- and bidentate CrATP and Co(NH3)4ATP. All the exchange-inert metal-nucleotides examined were found to be mutually exclusive inhibitors of F1, indicating that they all bind to the same site(s). It is postulated that the pKa of the metal-coordinated ligands is related to the potency of inhibition by these compounds. It appears probable that the exchange-inert nucleotide complexes are binding to site(s) in addition to the catalytic site(s) of F1.  相似文献   

10.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

11.
The mechanism of inhibition of aminopeptidase M by bile acids was analyzed by application of the specific velocity plot that was introduced by Baici [Eur. J. Biochem. 119, 9-14 (1981)]. Kinetic studies with three bile acids (cholic acid, deoxycholic acid, and chenodeoxycholic acid) and three substrates (Leu-Met, Leu-Gly, and Leu-pNA) showed that the inhibition constants Ki for the bile acids were appreciably different from each other, but that the Ki for each was not affected by the substrates used, being 0.89-1.03 mM for cholic acid, 0.42-0.66 mM for deoxycholic acid, and 0.24-0.31 mM for chenodeoxycholic acid. The values of the kinetic coefficient alpha [(apparent Ks in the presence of inhibitor)/Ks] for cholic acid with Leu-Met and Leu-Gly were 9.0 and 2.5, respectively. These values were very similar to those for chenodeoxycholic acid (7.0 and 2.7) but smaller than those for deoxycholic acid (21 and 11). The values of the other kinetic coefficient beta [(apparent kp in the presence of inhibitor)/kp] were 0 except in the case of the combinations of Leu-Gly with cholic acid (0.33) and Leu-Gly with chenodeoxycholic acid (0.13). On the basis of these kinetic parameters, the inhibitions by bile acids were classified into 4 types: competitive-noncompetitive linear mixed type (1 less than alpha less than infinity, beta = 0), noncompetitive-uncompetitive linear mixed type (0 less than alpha less than 1, beta = 0), pure noncompetitive type (alpha = 1, beta = 0), and hyperbolic mixed type (1 less than alpha less than infinity, 0 less than beta less than 1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The inhibition of T4 polynucleotide kinase by beta,gamma-imidoadenylyl 5'-triphosphate has been investigated. It was found that the ATP analog was a competitive inhibitor with regard to ATP and a noncompetitive inhibitor with regard to DNA possessing a 5'-hydroxyl group. At pH 8.0, the Ki values were 3 and 11 mM, respectively. beta,gamma-imidoadenylyl 5'-triphosphate was not a substrate in the forward reaction, but would replace ADP and ATP in the reverse reaction. The reverse reaction was also used to make beta,gamma-imidoadenylyl 5'-tetraphosphate.  相似文献   

13.
Acid alpha-glucosidase from human liver was 720-fold purified by means of a specific sorption on Sephadex G-150 and a specific desorption from Sephadex by the competitive inhibitor, methyl-alpha-D-glucopyranoside. The preparation obtained was homogenous in ultracentrifuge and polyacrilamide gel electrophoresis. The enzyme possessed both maltase and glucoamylase activities and splitted maltose, amylopectin and glycogen with Km values of 7mM, 7.7 mg/ml and 5 mg/ml respectively. Methyl-alpha-D-glucopyranoside competitively inhibited the enzymatic hydrolysis of polysaccharides (Ki=6.95 mM) and did not affect the maltose degradation. The sedimentation coefficient of the purified enzyme preparation was 5.4 S; in 5 M guanidine. HCl the coefficient decreased to 2.2 S, which testified to the fact that the enzyme molecule consisted of subunits.  相似文献   

14.
In human heart failure, disturbances in Ca2+ homeostasis are well known but the fate of the Na,K-ATPase isoforms (alpha1beta1, alpha2beta1 and alpha3beta1), the receptors for cardiac glycosides, still remains under study. Microsomes have been purified from non-failing human hearts. As judged by the sensitivities of Na,K-ATPase activity to ouabain (IC50 values: 7.0 +/- 2.5 and 81 +/- 11 nM), 3H-ouabain-binding measurements at equilibrium with and without 10 mM K+ and by a biphasic ouabain dissociation process, at least two finctionally active Na,K-ATPase isozymes coexist in normal human hearts. These are demonstrated as a very high- and a high affinity ouabain-binding site. The KD values are 3.6 +/- 1.6 nM and 17 +/- 6 nM, respectively. The two dissociation rate constants are 42 x 10(4) min(-1) and 360 x 10(-4) min(-1). Addition of 10 mM K+ ions shifted the respective KD values for ouabain from 3.6 +/- 1.6 to 20 +/- 5 nM and from 17 +/- 6 nM to 125 +/- 25 nM, respectively. The isozymes involved are identified by comparing these three pharmacological parameters to those of each alpha/beta-isozyme separately expressed in Xenopus oocytes (9). In human heart, the very high affinity site for ouabain is the alpha1beta1 dimer and the high affinity site is alpha2beta1.  相似文献   

15.
The glycosyltransferases controlling the biosynthesis of cell-surface complex carbohydrates transfer glycosyl residues from sugar nucleotides to specific hydroxyl groups of acceptor oligosaccharides. These enzymes represent prime targets for the design of glycosylation inhibitors with the potential to specifically alter the structures of cell-surface glycoconjugates. With the aim of producing such inhibitors, synthetic oligosaccharide substrates were prepared for eight different glycosyltransferases. The enzymes investigated were: A, alpha(1----2, porcine submaxillary gland); B, alpha(1----3/4, Lewis); C, alpha(1----4, mung bean); D, alpha(1----3, Lex)-fucosyltransferases; E, beta(1----4)-galactosyltransferase; F, beta(1----6)-N-acetylglucosaminyltransferase V; G, beta(1----6)-mucin-N-acetylglucosaminyltransferase ("core-2" transferase); and H, alpha(2----3)-sialyltransferase from rat liver. These enzymes all transfer sugar residues from their respective sugar nucleotides (GDP-Fuc, UDP-Gal, UDP-GlcNAc, and CMP-sialic acid) with inversion of configuration at their anomeric centers. The Km values for their synthetic oligosaccharide acceptors were in the range of 0.036-1.3 mM. For each of these eight enzymes, acceptor analogs were next prepared where the hydroxyl group undergoing glycosylation was chemically removed and replaced by hydrogen. The resulting deoxygenated acceptor analogs can no longer be substrates for the corresponding glycosyltransferases and, if still bound by the enzymes, should act as competitive inhibitors. In only four of the eight cases examined (enzymes A, C, F, and G) did the deoxygenated acceptor analogs inhibit their target enzymes, and their Ki values (all competitive) remained in the general range of the corresponding acceptor Km values. No inhibition was observed for the remaining four enzymes even at high concentrations of deoxygenated acceptor analog. For these latter enzymes it is suggested that the reactive acceptor hydroxyl groups are involved in a critical hydrogen bond donor interaction with a basic group on the enzyme which removes the developing proton during the glycosyl transfer reaction. Such groups are proposed to represent logical targets for irreversible covalent inactivation of this class of enzyme.  相似文献   

16.
Analogs (1----6) of diaminopimelic acid have been synthesized and tested for inhibition of meso-diaminopimelate decarboxylases from Bacillus sphaericus IFO 3525 and from wheat germ (Triticum vulgaris). Difluoromethyl diaminopimelate 1 does not irreversibly inactivate or strongly competitively inhibit either enzyme. Lanthionine sulfoxides (2ab, 2c, and 2d) are good competitive inhibitors (about 50% inhibition at 1 mM) of both decarboxylases. The meso and LL-isomers of lanthionine sulfone (3ab and 3c) and lanthionine (6ab and 6c) are weaker competitive inhibitors (about 50% inhibition at 10-20 mM). The corresponding DD-isomers (3d and 6d) are less effective. The N-modified analogs are the most potent competitive inhibitors. The inhibition constant (Ki) values for B. sphaericus and wheat germ decarboxylases with N-hydroxydiaminopimelate 4 (mixture of isomers) are 0.91 and 0.71 mM, respectively; for the N-aminodiaminopimelate 5 (mixture of isomers) the Ki values are 0.10 and 0.084 mM, respectively. These N-modified analogs do not effectively inhibit L-lysine decarboxylase. None of the compounds showed any time-dependent inactivation of the decarboxylases, in contrast to behavior of other pyridoxal phosphate-dependent enzymes with analogous substrate derivatives. Possible mechanisms of inhibition are discussed. In preliminary tests for antibiotic activity 4 and 5 both gave 75% growth inhibition of Bacillus megaterium at 20 micrograms/ml in defined media. Other analogs (1----3) showed essentially no antibacterial activity.  相似文献   

17.
N-Acetylserotonin (compound 1) and N-acetyldopamine (compound 7) inhibit bovine adrenal medullary sepiapterin reductase in a manner competitive with the pterin substrate and have Ki values of 0.12 and 0.4 microM, respectively. Molecular modeling suggests that the phenyl rings of the two compounds bind in the pyrimidine pocket of the enzyme with the 3-hydroxyl of dopamine or the 5-hydroxyl of serotonin aligned at the pyrimidine 4-position. Further, the acetyl moieties of the two inhibitors appear to mimic the substrate side chain. Consistent with this analysis, N-acetyl-m-tyramine (compound 13) is also an excellent competitive inhibitor (Ki = 0.13 microM), whereas N-acetyltryptamine (compound 2), N-acetyl-p-tyramine (compound 14) and N-acetylphenylethylamine (compound 15) all bind poorly. Interestingly, restricted-rotation analogs of N-acetyldopamine and N-acetyl-m-tyramine are noncompetitive inhibitors of the enzyme. Modification of N-acetyldopamine to N-chloroacetyldopamine (compound 10) or of N-acetylserotonin to the N-chloroacetyl (5) or N-methoxyacetyl (compound 6) analogs results in greatly increased competitive affinity, with Ki = 0.014 microM for the dopamine analog and 0.006 and 0.008 microM, respectively, for the serotonin analogs. In MOLT-4 T-cell leukemia and MCF-7 breast adenocarcinoma in culture, 0.1 mM N-methoxyacetylserotonin depleted tetrahydrobiopterin by greater than or equal to 97 and greater than 50%, respectively, with no effect upon cell growth. In both cell lines, the GTP cyclohydrolase inhibitor, 2,4-diamino-6-hydroxypyrimidine at 1-5 mM also depleted tetrahydrobiopterin greater than or equal to 97%. In this case, however, modest growth inhibition did occur. Since the growth inhibition could not be reversed upon tetrahydrobiopterin repletion, inhibition was due to other effects of the inhibitor rather than to tetrahydrobiopterin depletion. The results show that there is no effect on cell growth when at least 97% of the tetrahydrobiopterin in these cell lines is depleted. Since the sepiapterin reductase inhibitor depleted tetrahydrobiopterin with fewer nonspecific effects than the cyclohydrolase inhibitor, it will be useful for determining metabolic effects of tetrahydrobiopterin depletion.  相似文献   

18.
19.
Integrins alpha9beta1 and alpha4beta1 form a distinct structural class, but while alpha4beta1 has been subjected to extensive study, alpha9beta1 remains poorly characterized. We have used the small molecule N-(benzenesulfonyl)-(L)-prolyl-(L)-O-(1-pyrrolidinylcarbonyl)tyrosine (3) to investigate the biochemical properties of alpha9beta1 and directly compare these properties with those of alpha4beta1. Compound 3 has a high affinity for both integrins with K(D) values of < or =3 and 180 pM for alpha9beta1 in 1 mM Mn2+ (activating) and 1 mM Ca2+ and 1 mM Mg2+ (nonactivating) conditions and < or =5 and 730 pM for alpha4beta1 under the corresponding conditions. Ca2+ treatment promoted the binding of 3 to both integrins (EC50 = 30 microM Ca2+ in both cases). Compound 3 binding to both integrins was also stimulated by the addition of the activating monoclonal antibody TS2/16. These findings indicate that the mechanisms by which metal ions and TS2/16 regulate ligand binding to alpha9beta1 and alpha4beta1 are similar. The binding of 3 to both integrins induced the mAb 9EG7 LIBS epitope, a property consistent with occupancy of the receptor's ligand binding site by 3. But whereas EGTA treatment inhibited the binding of 9EG7 to alpha4beta1, it stimulated the binding of 9EG7 to alpha9beta1. The 9EG7 and TS2/16 effects point to contributions of the beta1-chains on binding. Cross-linking data revealed that the integrin alpha-chains are also involved in binding the small molecule, as stable linkages were observed on both the alpha9 chain of alpha9beta1 and the alpha4 chain of alpha4beta1. Extensive structure-activity analyses with natural and synthetic ligands indicate distinct features of the ligand binding pockets. Most notable was the estimated >1000-fold difference in the affinity of the integrins for VCAM-1, which binds alpha4beta1with an apparent K(D) of 10 nM and alpha9beta1 with an apparent K(D) of >10 microM. Differences were also seen in the binding of alpha9beta1 and alpha4beta1 to osteopontin. Compound 3 competed effectively for the binding of VCAM-1 and osteopontin to both integrins. While these studies show many similarities in the biochemical properties of alpha9beta1 and alpha4beta1, they identify important differences in their structure and function that can be exploited in the design of selective alpha9beta1 and alpha4beta1 inhibitors.  相似文献   

20.
The inhibition effect of metal ions on beta amylase activity was studied. The inhibitor-binding constant (Ki) was determined by spectrophotometric and isothermal titration calorimetric (ITC) methods. The binding of calcium, magnesium and zinc ion as inhibitors at the active site of barley beta amylase was studied at pH = 4.8 (sodium acetate 16 mM) and T = 300K. The Ki and enthalpy of binding for calcium (13.4, 13.1 mM and -14.3 kJ/mol), magnesium (18.6, 17.8mM and -17.7 kJ/mol) and zinc (17.5, 17.7 mM and -20.0 kJ/mol) were found by spectrophotometric and ITC methods respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号