首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
There is a demand of novel high resolution separation media for separation of complex mixtures, particularly biological samples. One of the most flexible techniques for development of new separation media currently is synthesis of the continuous bed (monolithic) stationary phases. In this study the capillary format gradient stationary phases were formed using continuous bed (monolith) polymerization in situ. Different reversed-phase stationary phase gradients were tailored and their resolution using capillary liquid chromatography and capillary electrochromatography at isocratic mobile phase conditions was evaluated. It is demonstrated, that efficiency and resolution of the gradient stationary phases can be substantially increased comparing to the common (isotropic) stationary phases. The proposed formation approach of the gradient stationary phase is reproducible and compatible with the capillary format or microchip format separations. It can be easily automated for the separation optimizations or mass production of the capillary columns or chips.  相似文献   

2.
The continuous bed technique with its attractive features, such as fritless design, one-step in situ synthesis, low back pressure and no need for pressurising the electrode vessels to suppress bubble formation was applied to form polyrotaxane-based stationary phases for capillary electrochromatography (CEC). Rotaxanes are synthesized from two classes of substances, namely linear reactive monomers and inert cyclic compounds. Upon polymerisation, a gel forms with the cyclic molecules mechanically immobilized (see Fig. 1). We have employed this simple approach, using charged derivatives of cyclodextrins in order to introduce charged groups into continuous beds and thus render them appropriate for electrochromatography. The self-assembly of supramolecular structures to form rotaxanes during the synthesis of the continuous beds is treated. The electroosmotic and chromatographic properties of the various polyrotaxane-based stationary phases synthesized are discussed, as well as the synthesis of the continuous beds, including how to affect their porosity and its influence on the efficiency of the electrokinetic separation. The applicability of the rotaxane-based continuous bed is demonstrated by separation of model compounds by reversed- and normal-phase chromatography. A separation of enantiomers is also presented. This experiment is of particular interest because it indicates that the interaction with the cavity of beta-cyclodextrin (beta-CD) is not a fundamental requirement for enantioseparations.  相似文献   

3.
Investigation of individual drug enantiomers is required in pharmacokinetic and pharmacodynamic studies of drugs with a chiral centre. Cyclodextrins (CDs) are extensively used in high-performance liquid chromatography as stationary phases bonded to a solid support or as mobile phase additives in HPLC and capillary electrophoresis (CE) for the separation of chiral compounds. We describe here the basis for the liquid chromatographic and capillary electrophoretic resolution of drug enantiomers and the factors affecting their enantiomeric separation. This review covers the use of CDs and some of their derivatives in studies of compounds of pharmacological interest.  相似文献   

4.
Cellulose tris(3-chloro-4-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSPs) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the chiral selector loading onto silica, mobile phase composition and pH, as well as separation variables on separation of enantiomers was studied. It was found that CSPs based on cellulose tris(3-chloro-4-methylphenylcarbamate) can be used for preparation of very stable capillary columns useful for enantioseparations in nano-LC and CEC in combination with polar organic mobile phases.  相似文献   

5.
This contribution reviews work about liposomes in the context of electrically driven separation methods in the capillary format. The discussion covers four topics. The one broaches the application of liposomes as pseudo-stationary phases or carriers in vesicle or liposome electrokinetic chromatography (EKC) in the way as microemulsions and micelles are used; it includes the chromatographic use of liposomal bilayers as stationary phases attached to the wall for capillary electrochromatography (CEC). The second topic is the characterization and separation of liposomes as analytes by capillary electrophoresis (CE). Then the determination of distribution coefficients and binding constants between liposomes and ligands is discussed, and finally work dealing with peptides and proteins are reviewed with lipid bilayers as constituents of the electrically driven separation system.  相似文献   

6.
Two different capillary electrochromatography (CEC) stationary phases, Hypersil phenyl and Hypersil C(18), have been characterised with respect to their ability to separate the four basic peptides H-Tyr-(D)Ala-Phe-Phe-NH(2) (TAPP), H-Tyr-(D)Ala-Phe-NH(2) (TAP), H-Phe-Phe-NH(2) (PP) and H-Phe-NH(2) (P). Optimal separation conditions were first established separately for the two phases by applying experimental design in a stepwise procedure. The first step comprised a study to acquire basic knowledge about the variables, their influence on the response and their respective experimental domains for each of the two stationary phases. The second step was screening the significant variables and the third step was an optimisation with response surface modelling (RSM) to locate the optimum separation conditions for each stationary phase. The experimental procedure was identical for both stationary phases, but their respective experimental domains were different. The response functions were peak resolution and peak efficiency. This procedure enables specific optimal experimental conditions to be identified for each of the two stationary phases. The optimal conditions identified for the separation on the phenyl stationary phase were to use 50% ACN, 20% 50 mM Tris(hydroxymethyl)aminomethane (TRIS) pH 7.5, 30% H(2)O as BGE, operating at 20 degrees C and 20 kV high voltage. For the C(18) stationary phase optimal separation was achieved using a BGE with 80% ACN, 20% 30 mM TRIS pH 8.5, again operating at 20 degrees C and 20 kV high voltage. Results show that the phenyl stationary phase is better suited for the separation of basic, hydrophilic peptides.  相似文献   

7.
The pioneering research work published by Hjertén et al. [J. Chromatogr. 473 (1989) 273] in 1989 dealing with development and application of the continuous bed (monolithic) technique as an attractive alternative for the classical packed columns in chromatography, stimulated further investigations in this direction. The research data published since that time on the development and application of the continuous beds formed using hydrophobic interaction-based phase separation mechanism are reviewed. Some innovative species of the beds, such as polyrotaxane beds or nonparticulate restricted-access materials for direct analysis of the biological fluids in the capillary format are also discussed. Characteristic features and practical details of the continuous bed technique are revealed. Due to many advantages, the continuous bed technique became a competitor with the traditional packings in capillary or chip-based microanalysis. The importance of the continuous bed morphology on the chromatographic characteristics is shown. The applicability of modern microscopic analysis to evaluate the morphology of the continuous beds is demonstrated.  相似文献   

8.
We have investigated free-solution capillary electrophoresis (FSCE) and micellar electrokinetic capillary chromatography (MECC) separations of metallothionein (MT) isoforms conducted in uncoated and surface-modified fused-silica capillaries. At alkaline pH, FSCE rapidly resolves isoforms belonging to the MT-1 and MT-2 charge classes. At acidic pH, additional resolution of MT isoforms is achieved. The use of high-ionic-strength (0.5 M) phosphate buffers can result in high peak efficiencies and increased resolution for some MT isoforms. Interior capillary surface coatings such as polyamine and linear polyacrylamide polymers permit separation of MT isoforms with enhanced resolution through their effects on electroosmotic flow (EOF) and protein-wall interactions. Improvements in MT isoform resolution can also be achieved by MECC using 100 mM borate buffer pH 8.4 containing 75 mM SDS. Deproteinization of tissue cytosol samples with acetonitrile (60–80%) or perchloric acid (7%) produces extracts that can be subjected to direct analysis of MT by FSCE or MECC. We conclude that optimal separation of MT isoforms by capillary electrophoresis (CE) can be achieved with the appropriate combination of different capillaries, buffers and sample preparation techniques.  相似文献   

9.
The chiral selector vancomycin was used either as mobile phase additive or bound as a chiral stationary phase (CSP) for the stereoselective separation of seven racemic nonsteroidal anti-inflammatory drugs (NSAIDs), fenoprofen, carprofen, flurbiprofen, indoprofen, flobufen, ketoprofen, and suprofen, by capillary liquid chromatography. The effect of the type of stationary phase, the chiral column Chirobiotic V or the achiral stationary phases Nucleosil 100 C8 HD and Nucleosil 100 C18 HD, and the concentration of vancomycin in the mobile phase on separation of the drug enantiomers were evaluated. All the drugs, except flobufen, were successfully enantioseparated on Nucleosil 100 C8 HD with 4 mM vancomycin present in the mobile phase (composed of methanol and buffer) in the reversed phase mode. On the vancomycin-bonded chiral stationary phase, it was difficult to get enantioseparations of the profen NSAIDs. However, flobufen gave better enantioseparation on the vancomycin CSP. The better enantioresolution of the majority of profen derivatives on the achiral columns with vancomycin added to the mobile phase can be attributed in particular to the higher separation efficiency of this capillary chromatographic system. In addition, vancomycin dimers, formed in the mobile phase, seem to offer a better steric arrangement for stereoselective interaction to these analytes than the vancomycin bonded on the CSP. These substantial differences in the CS structure significantly influence the chiral discrimination mechanism.  相似文献   

10.
The separation methods of the enantiomers of two β‐blockers and tryptophan were studied using capillary electrochromatography with heparin covalently as well as non‐covalently, bonded onto the capillary inner wall as stationary phase and electrokinetic chromatography with heparin as pseudostationary phase. In the case of heparin, used as a stationary phase, the method was unable to resolve enantiomers in both cases β‐blockers and tryptophan. On the other hand, when heparin was used as a pseudostationary phase, the resolution of the enantiomers was obtained only with 3‐aminopropyltriethoxysilane which were immobilised onto the inner phase of the capillary. The results of this study let us infer that the electrostatic, hydrophobic, and steric interactions were involved in the separation mechanisms. The separation was achieved in less than 10 minutes under the optimized conditions: 30 mM phosphate buffer (pH 2.5) with the adding of 15 mg/mL of heparin at 15°C and 10 kV. The usefulness of heparin as a chiral selector both in electrokinetic chromatography using 3‐aminopropyltriethoxysilane attached to the capillary was demonstrated for the first time. The developed method was powerful, sensitive, and fast, and it could be considered an important alternative to conventional methods used for chiral separation.  相似文献   

11.
The continuous separation of proteins was performed in a countercurrent gradient chromatography (CGC) system. A magnetically stabilized fluidized bed (MSFB) was used to establish true countercurrent contact of a solid resin with a liquid buffer. STable pH gradients were formed in the system in less than 10 min and remained stable throughout the course of the separation experiment (>2 h). The shape of the pH gradient, which ultimately controls the resolution and purity of the separation, can be controlled by making simple adjustments in the interstitial velocities of the liquid and solid phases. We have performed the separation of myoglobin and human serum albumin (HSA) using this device and achieved concentration factors of 1.75 for myoglobin and 1.2 for HSA. A mathematical model that has no adjustable parameters has been developed that predicts the focusing behaviour and capabilities of the CGC system. Using the model, we have estimated the optimum phase velocities, particle diameters, and equilibrium parameters necessary for achieving high purity and high concentrations. (c) 1995 John Wiley & Sons, Inc.  相似文献   

12.
Peptides, proteins, single-stranded oligonucleotides, and double-stranded DNA fragments were separated with high resolution in micropellicular, monolithic capillary columns prepared by in situ radical copolymerization of styrene and divinylbenzene. Miniaturized chromatography both in the reversed-phase and the ion-pair reversed-phase mode could be realized in the same capillary column because of the nonpolar character of the poly-(styrene/divinylbenzene) stationary phase. The high chromatographic performance of the monolithic stationary phase facilitated the generation of peak capacities for the biopolymers in the range of 50-140 within 10 min under gradient elution conditions. Employing volatile mobile phase components, separations in the two chromatographic separation modes were on-line hyphenated to electrospray ionization (tandem) mass spectrometry, which yielded intact accurate molecular masses as well as sequence information derived from collision-induced fragmentation. The inaccuracy of mass determination in a quadrupole ion trap mass spectrometer was in the range of 0.01-0.02% for proteins up to a molecular mass of 20000, and 0.02-0.12% for DNA fragments up to a molecular mass of 310000. High-performance liquid chromatography-electrospray ionization mass spectrometry utilizing monolithic capillary columns was applied to the identification of proteins by peptide mass fingerprinting, tandem mass spectrometric sequencing, or intact molecular mass determination, as well as to the accurate sizing of double-stranded DNA fragments ranging in size from 50 to 500 base pairs, and to the detection of sequence variations in DNA fragments amplified by the polymerase chain reaction.  相似文献   

13.
Conditions were worked out for the separation of carbamazepine, olanzapine, and their main metabolites carbamazepine 10,11-epoxide, 10-hydroxycarbamazepine, and desmethylolanzapine. The separation was based on electrokinetically driven methods in the capillary format. The main difficulty in separating these compounds is related to their different chemical classes. Whereas the carbamazepine members are amides, and are electrically neutral, the olanzapine members have aliphatic amino groups and are thus cationic under most experimental conditions. Different additives were applied as pseudo-stationary phases to implement selectivity. Poly(diallyldimethylammonium), PDADMA, is a polycationic replaceable and soluble polymer, that interacts mainly according to the polarisability of the analyte molecules. The MEKC principle was applied with the common SDS as micelle former. In both systems, only partial resolution of the analytes was obtained. The most favorable system consisted of a charged, oligomeric additive: full separation of all analytes within 4 min was achieved with heptakis-6-sulfato-β-cyclodextrin (7 mM) in 30 mM borate buffer, pH 8.5.  相似文献   

14.
HPLC and CE have been applied to the separation of some newly synthesized substances, including nonapeptides from the intrachinary region of insulin, insulin-like growth factors I and II (IGF I and II) and some penta- and hexapeptides. All the peptides are satisfactorily separated using a reversed-phase HPLC system with a C18 stationary phase and mobile phases of 20–40% acetonitrile (v/v) and 0.2% trifluoroacetic acid in water (v/v). The best CE separation of IGF I and II has been achieved in a 30 mM phosphate buffer (pH 4–5), whereas 150 mM phosphoric acid (pH 1.8) is optimal for the insulin nonapeptides. The latter electrolyte is also suitable for the CE separation of the hexapeptides, as is a micellar system containing 20 mM borate-50mM sodium dodecyl sulfate (pH 9.0). Complete CE resolution of the d- and l-forms is possible in a 50 mM phosphate buffer (pH 2.5) containing 10 mM β-cyclodextrin. UV spectrophotometric detection was used throughout, at wavelengths from 190 to 215 nm. The CE procedures are, in general, preferable to HPLC separations, as they exhibit better separation efficiencies, are faster and consume smaller amounts of analytes and reagents.  相似文献   

15.
Monoliths are considered as a novel generation of stationary phases. They were applied for capillary electrochromatography and liquid chromatography exploiting every action principle such as ion-exchange, affinity recognition, reversed-phase, and hydrophobic interaction. The fast separation was explained by convective transport of the solutes through the bed. The contribution of this mode of transport is similarly explained as done for the beds packed with particles with gigapores. For monolithic beds, the concept of an ultrashort bed was frequently used. This mode of operation allows very short separation time. In many cases a gradient elution is necessary to achieve separation. Examples of applications for protein and polynucleotide separation performed on monoliths are given. Enzymatic conversion was described showing the examples of several immobilzed enzymes.  相似文献   

16.
We report here on the preparation of monolithic capillary columns in view to their integration in a microsystem for on-chip sample preparation before their on-line analysis by electrospray and mass spectrometry (ESI-MS). These monolithic columns are based on polymer materials and consist of reverse phases for peptide separation and/or desalting. They were prepared using lauryl methacrylate (LMA), ethylene dimethacrylate (EDMA) as well as a suitable porogenic mixture composed of cyclohexanol and ethylene glycol. The resulting stationary phases present thus a C12-functionality. The LMA-based columns were first prepared in a capillary format using capillary tubing of 75 microm i.d. and tested in nanoLC-MS experiments for the separation of a commercial Cytochrome C digest composed of 12 peptidic fragments whose isoelectric point values and hydrophobic character cover a wide range. The LMA-based columns were capable of separating the peptidic fragments and their performances were seen to be similar as those of standard commercial columns dedicated to proteomic purposes with calculated separation efficiencies up to 145 x 10(3) plates/m. Monolithic LMA-based phases were then successfully polymerized in microchannels fabricated using the negative photoresist SU-8. After the polymerization, the systems were seen to withstand the pressures applied during the nanoLC-MS separation tests that were carried out in the same conditions as for the monolithic capillary columns. The pressure drop during these tests of the in-microchannel monoliths was as high as 50 bar; however, the separation was not as good as for a capillary format which could be accounted for by the monolith dimensions.  相似文献   

17.
A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.  相似文献   

18.
The preconditions are outlined for enantioselective separations in capillary electrophoresis (CE) with chiral selectors as additives to the background electrolyte. Free solution capillary electrophoresis conditions are characterised by a single solution phase. Chiral separations are reviewed by selector type (chiral ligand exchange, cyclodextrins, crown ethers, glycoproteins) with the extensive studies on cyclodextrins grouped into sections on amino acids, pharmaceuticals, and speciality chemicals, optimisation, biological fluids, and quantitative aspects. In micellar electrokinetic capillary chromatography, enantioselective discrimination occurs by partition in a two-phase system, with a chiral micellar phase as selector. Optimum separation conditions can be readily predicted for a given selector–selectand combination, and absolute values of binding constants determined by CE. Advantages of CE in comparison with HPLC using a chiral stationary phase include robust, rapid assays and the use of small volumes of aqueous solutions; disadvantages include less favourable detection limits. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Ropinirole, 4-[2-(dipropylamino)ethyl]-1,3-dihydro-2H-indol-2-one, is a potent anti-Parkinson’s disease drug developed by SmithKline Beecham Pharmaceuticals. Capillary liquid chromatography (CLC) was used for the separation and quantification of ropinirole and its five related impurities, potentially formed during its synthesis. A simultaneous optimization of three mobile phase parameters, i.e., pH, buffer concentration and acetonitrile content was performed employing an experimental design approach which proved a powerful tool in method development. The retention factors of the investigated substances in different mobile phases were determined. Baseline resolution of the six substances on a C18 reversed stationary phase was attained using a mobile phase with an optimized composition [acetonitrile–8.7 mM 2-(N-morpholino)ethanesulfonic acid adjusted to pH 6.0 (55:45, v/v)]. It was shown that CLC, operated in the isocratic mode under the mobile phase flow-rate of 4 μl/min, can determine the level of these impurities, down to a level of 0.06% of the main component within 25 min.  相似文献   

20.
A simple method for the preparation of an affinity monolithic (also called continuous bed) capillary column for α-mannose-specific lectins is described. 2-Hydroxyethyl methacrylate in combination with (+)-N,N´-diallyltartardiamide (DATD) and piperazine diacrylamide (PDA, 1,4-bisacryloyl-piperazine) as crosslinkers, were used as monomers for the monolith. After oxidation of DATD with periodate, α-mannose with spacer was bound to the aldehyde groups of the polymeric skeleton via reductive amination to form an affinity column for the separation, enrichment or binding studies of mannose-specific lectins. The permeability of the column was excellent. The porosity of the monolith was investigated by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC). The affinity of the monolith was evaluated by frontal analysis (FA) and fluorescence microscopy (FM) using fluorescently labeled concanavalin (Con A). Frontal affinity chromatography showed a specific interaction of two different lectins with the α-mannose-modified monolith. According to FM the affinity sites were evenly distributed over the monolithic bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号