首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

2.
Propolis is a gummy material made by honeybees for protecting their hives from bacteria and fungi. The main objective of this study is to determine the chemical compositions and concentrations of organic compounds in the extractable organic matter (EOM) of propolis samples collected from four different regions in Yemen. The propolis samples were extracted with a mixture of dichloromethane and methanol and analyzed by gas chromatography–mass spectrometry (GC–MS). The results showed that the total extract yields ranged from 34% to 67% (mean = 55.5 ± 12.4%). The major compounds were triterpenoids (254 ± 188 mg g−1, mainly α-, β-amyryl and dammaradienyl acetates), n-alkenes (145 ± 89 mg g−1), n-alkanes (65 ± 29 mg g−1), n-alkanoic acids (40 ± 26 mg g−1), long chain wax esters (38 ± 25 mg g−1), n-alkanols (8 ± 3 mg g−1) and methyl n-alkanoates (6 ± 4 mg g−1). The variation in the propolis chemical compositions is apparently related to the different plant sources. The compounds of these propolis samples indicate that they are potential sources of natural bio-active compounds for biological and pharmacological applications.  相似文献   

3.
《Aquatic Botany》2005,82(4):239-249
The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), as well as photosynthetic pigment contents and free malondialdehyde (MDA), were determined in senescent batch cultures of Tetraselmis gracilis (Kylin) Butcher, under a cyclic light regime. A 2.6-fold increase in SOD activity (from 53 to 137 U mg−1 protein) was observed in the light phase, contrasting with a 9-fold increase in CAT (from 1 to 9 μmol H2O2 min−1 mg−1 protein) and a 1.7-fold increase in APX (from 3 to 5 μmol ascorbate min−1 mg−1 protein) activities, both enzymes peaking in the dark phase. The β-carotene and lycopene content did not vary significantly with the light–dark cycle. The Chl a, Chl b, lutein, zeaxanthin, violaxanthin and neoxanthin pigments exhibited the highest values in the first half (3–6 h) of the light phase, followed by a declining trend and a plateau or a slight increase 3 h from the beginning of the dark phase onwards. The highest values for prasinoxanthin were observed in the second half of the dark phase and the first half of the light phase. None of the pigments displayed any discernible cyclic trend. The possibility of the xanthophyll cycle occurring during senescence is discussed in light of the high value (∼0.9) obtained for the zeaxanthin/(zeaxanthin + violaxanthin) ratio. The free MDA content was enhanced during the experimental period, which may be an indicator of oxidative stress in aging cell cultures. Our results indicated the occurrence of an imbalance between the production of reactive oxygen species and the antioxidant defense in stationary T. gracilis cells.  相似文献   

4.
The synthesis of chitosan (Chs) and chitin (Chi) copolymer and grafting of acrylamide (AAm) onto the synthesized copolymer have been carried out by chemical methods. The grafted copolymer was characterized by FTIR, SEM and XRD. The extracellular cutinase of Aspergillus sp. RL2Ct (E.C. 3.1.1.3) was purified to 4.46 fold with 16.1% yield using acetone precipitation and DEAE sepharose ion exchange chromatography. It was immobilized by adsorption on the grafted copolymer. The immobilized enzyme was found to be more stable then the free enzyme and has a good binding efficiency (78.8%) with the grafted copolymer. The kinetic parameters KM and Vmax for free and immobilized cutinase were found to be 0.55 mM and 1410 μmol min−1 mg−1 protein, 2.99 mM and 996 μmol min−1 mg−1 protein, respectively. The immobilized cutinase was recycled 64 times without considerable loss of activity. The matrix (Chs-co-Chi-g-poly(AAm)) prepared and cutinase immobilized on the matrix have potential applications in enzyme immobilization and organic synthesis respectively.  相似文献   

5.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

6.
Hydroperoxide lyases (HPL E.C. 4.1.2.) are part of the lipoxygenase pathway in plants and catalyze the conversion of fatty acid hydroperoxides into oxo acids and short chain aldehydes. These aldehydes have desirable properties for the food and agricultural industry. HPL activity can be modulated by salts and surfactants, but the mechanisms governing the modulation are not fully understood. Recombinant HPL activity was evaluated by use of factorial experimental design investigating the effects of KCl and Triton X-100 on HPL activity with 13-hydroperoxy-octadecadienoic acid (LA-OOH) and 13-hydroperoxy-octadienoyl sulfate (LS-OOH) as substrates. To investigate solubility issues of the two different substrates, an aqueous and a two-phase micro-aqueous reaction medium was used. The highest HPL activity (8.7 μmol min−1 mg−1) was achieved under aqueous conditions with high salt (1.5 M) and low surfactant (0%, v/v) concentrations and LA-OOH as a substrate. Maximal activity (2.4 μmol min−1 mg−1) under micro-aqueous conditions was achieved with high salt (1.5 M) and high surfactant (0.01%, v/v) concentrations and LS-OOH as a substrate. A significant interaction between salt and surfactant as well as salt and substrate could be identified and a hypothesis for the interaction phenomena is presented.  相似文献   

7.
《Process Biochemistry》2014,49(10):1606-1611
The filamentous fungus Paecilomyces lilacinus was grown on n-hexadecane in submerged (SmC) and solid-state (SSC) cultures. The maximum CO2 production rate in SmC (Vmax = 11.7 mg CO2 Lg−1 day−1) was three times lower than in SSC (Vmax = 40.4 mg CO2 Lg−1 day−1). The P. lilacinus hydrophobin (PLHYD) yield from the SSC was 1.3 mg PLHYD g protein−1, but in SmC, this protein was not detected. The PLHYD showed a critical micelle concentration of 0.45 mg mL−1. In addition, the PLHYD modified the hydrophobicity of Teflon from 130.1 ± 2° to 47 ± 2°, forming porous structures with some filaments <1 μm and globular aggregates <0.25 μm diameter. The interfacial studies of this PLHYD could be the basis for the use of the protein to modify surfaces and to stabilize compounds in emulsions.  相似文献   

8.
The main objective of this work was to study the enzymatic synthesis of short chain ethyl esters, a group of relevant aroma molecules, by Fusarium solani pisi cutinase in an organic solvent media (iso-octane), and to assess the influence of different parameters on the reaction yield.Cutinase displayed high initial esterification rates in iso-octane, which amounted to 1.15 μmol min−1 mg−1 for ethyl butyrate (C4 acid chain) and 1.06 μmol min−1 mg−1 for ethyl valerate (C5 acid chain). High product yields, 84% for ethyl butyrate and 96% for ethyl valerate, were observed after 6 h of reaction, for an initial equimolar concentration of substrates (0.1 M).The highest product yield (97%) was observed for ethyl caproate (C6) synthesis, a compound which is a part of natural apple and pineapple flavour, for an alcohol:acid molar ratio of 2 (0.2 M ethanol concentration).Cutinase affinity for short chain length carboxylic acids (C4–C6) in ester synthesis in iso-octane confirmed previous observations in reversed micellar system.  相似文献   

9.
《Process Biochemistry》2010,45(6):835-840
Horseradish peroxidase is used in many biotechnological fields including diagnostics, biocatalysts and biosensors. Horseradish peroxidase isozyme C (HRPC) was extracellularly expressed in Spodoptera frugiperda Sf9 cell culture and in intact larvae. At day 6 post-infection, the concentration of active HRPC in suspension cultures was 3.0 ± 0.1 μg per 1 × 106 cells or 3.0 ± 0.1 mg l−1 with a multiplicity of infection of 1 in the presence of 7.2 μM hemin. Similar yields were obtained in monolayer cultures. In larvae, the HRPC expression level was 137 ± 17 mg HRPC kg−1 larvae at day 6 post-infection with a single larvae thus producing approximately 41 μg HRPC. The whole larval extract was separated by ion exchange chromatography and HRPC was purified in a single step with a yield of 75% and a purification factor of 117. The molecular weight of recombinant HRPC was 44,016 Da, and its glycosylation pattern agreed with that expected for invertebrates. The Km and Vmax were 12.1 ± 1.7 mM and 2673 ± 113 U mg−1, respectively, similar to those of HRP purified from Armoracia rusticana roots. The method described in this study, based on overexpression of HRPC in S. frugiperda larvae, is a simple and inexpensive way to obtain high levels of active enzyme for research and other biotechnological applications.  相似文献   

10.
《Process Biochemistry》2007,42(8):1237-1243
The pectinolytic enzyme obtained from Penicillium viridicatum RFC by solid-state fermentation was purified to homogeneity by pretreatment with kaolin (40 mg mL−1) and ultrafiltration, followed by chromatography on a Sephadex G50 column. The apparent molecular weight of the enzyme was 24 kDa. Maximal activity occurred at pH 6.0 and at 60 °C. The enzyme proved to be an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of highly esterified pectin. The presence of 10 mM Ba2+ increased the enzyme activity by 96% and its thermal stability by 30%, besides increasing its stability at acid pH. The apparent Km with apple pectin as substrate was 1.82 mg mL−1 and the Vmax was 81 μmol min−1 mg−1.  相似文献   

11.
Enzymes in the newly described rumen bacterium, Treponema zioleckii strain kT, capable of digesting Timothy grass fructan, inulin, and sucrose were identified and characterized. Two specific endolevanases and one non-specific β-fructofuranosidase were found in a cell-free extract. The molecular weight of the endolevanases were estimated to be 60 and 36 kDa, whereas that of β-fructofuranosidase, 87 kDa. The former of the specific enzymes was associated with the outer membrane, while the latter and the non-specific β-fructofuranosidase, with the periplasm or cytosol. The Km and Vmax for Timothy grass fructan degradation by endolevanase were 0.27% and 15.75 μM fructose equivalents × mg protein?1 × min?1, those for sucrose and inulin digestion by β-fructofuranosidase were 1.35 × 10?3 M and 1.73 μM hexoses × mg protein?1 × min?1 and 1.77% and 1.83 μM hexoses × mg protein?1 × min?1, respectively.  相似文献   

12.
We reported the Australian golden wattle as a copper stabilizer in abandoned copper mine soils earlier. Here we investigate to confirm this plant’s suitability to grow on metal contaminated mine soils based on stress indication. The seeds of Acacia pycnantha collected from mining area were germinated after heat and no heat treatment on two types of irrigation. The daily irrigated and heat treated seeds gave up to 85% germination on sandy soil. The A. pycnantha was grown under greenhouse condition in six different soils collected from abandoned copper mine at Kapunda in South Australia. Among the six soil samples, soil-1 with the highest copper concentration produced 2.05 mmol g−1 tissue of proline. Proline expression was prominent in more saline soils (1, 5 and 6) having electrical conductivity (EC) 1184, 1364 and 1256 μS, respectively. Chlorophyll a, b and carotenoid levels in plants showed a gradually decreasing trend in all the soils as experiment progressed. The plants grown on soil sample-1, containing 4083 ± 103 mg kg−1 of copper resulted in 18 ± 2 mg kg−1 accumulation in its leaf. The calcium accumulation was significant up to 11648 ± 1209 mg kg−1 in leaf. Although pore water samples showed higher Cu concentration in soils, an increased mobility of arsenic and lead was observed in all the soil samples. Our experiment points out the need for proper monitoring of revegetation processes to avoid revegetation and reclamation failure.  相似文献   

13.
《Process Biochemistry》2007,42(6):1028-1032
Chromate reduction was carried out by resting cells of Achromobacter sp. Ch-1 with lactate as electron donor under aerobic conditions. The reduction activity of the samples supplemented with lactate was two times as those without lactate. The reduction rate was influenced by initial pH and lactate concentration. Under the optimal conditions, pH 9.0 and 4000 mg l−1 lactate supplement, reduction rate was 5.45 mg l−1 min−1. The reduction rate decreased with increasing of Cr(VI) concentrations and increased with cell densities proportionally. The maximum reduction limit of Ch-1 cells was obtained at 2107 mg l−1 of Cr(VI).  相似文献   

14.
We have previously demonstrated in human subjects who under euglycemic clamp conditions GLP-1(9–36)amide infusions inhibit endogenous glucose production without substantial insulinotropic effects. An earlier report indicates that GLP-1(9–36)amide is cleaved to a nonapeptide, GLP-1(28–36)amide and a pentapeptide GLP-1(32–36)amide (LVKGR amide). Here we study the effects of the pentapeptide on whole body glucose disposal during hyperglycemic clamp studies. Five dogs underwent indwelling catheterizations. Following recovery, the dogs underwent a 180 min hyperglycemic clamp (basal glucose +98 mg/dl) in a cross-over design. Saline or pentapeptide (30 pmol kg−1 min−1) was infused during the last 120 min after commencement of the hyperglycemic clamp in a primed continuous manner. During the last 30 min of the pentapeptide infusion, glucose utilization (M) significantly increased to 21.4 ± 2.9 mg kg−1 min−1compared to M of 14.3 ± 1.1 mg kg−1 min−1 during the saline infusion (P = 0.026, paired t-test; P = 0.062, Mann–Whitney U test). During this interval, no significant differences in insulin (26.6 ± 3.2 vs. 23.7 ± 2.5 μU/ml, P = NS) or glucagon secretion (34.0 ± 2.1 vs. 31.7 ± 1.8 pg/ml, P = NS) were observed. These findings demonstrate that under hyperglycemic clamp studies the pentapeptide modulates glucose metabolism by a stimulation of whole-body glucose disposal. Further, the findings suggest that the metabolic benefits previously observed during GLP-1(9–36)amide infusions in humans might be due, at least in part, to the metabolic effects of the pentapeptide that is cleaved from the pro-peptide, GLP-1(9–36)amide in the circulation.  相似文献   

15.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

16.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

17.
The formate dehydrogenase (FDH, EC: 1.2. 1.2) from Candida boidinii was found to be inactivated and unstable in the presence of high concentration (>50%) of the water soluble dimethylimidazolium dimethyl phosphate ([MMIm][Me2PO4]) ionic liquid. In order to circumvent this problem, the enzyme was chemically modified by cations usually present in ionic liquids: cholinium (1), hydroxyethyl-methylimidazolium (2) and hydroxypropyl-methylimidazolium (3) cations were activated with carbonyldiimidazole before being reacted with the FDH leading to a heterogeneous population of 6–7 biocatalysts. FDH modified by (1) or (3) led to 3–9 modifications while FDH modified by (2) led to 6 proteins presenting 7–12 grafted cations. Specific activity of the modified enzymes was decreased by a 2.5–3-fold factor (0.10–0.15 μmol min−1 mg−1) compared to the non-modified FDH (0.33 μmol min−1 mg−1) when assayed in carbonate buffer (pH 9.7, 25 mM). After modification, the FDH still present 0.06 μmol min−1 mg−1 in 70% [MMIm][Me2PO4] (v:v) (30–45% of their activity in aqueous buffer) while the native enzyme is inactive at this ionic liquid concentration, proving the efficiency of this strategy. The half-life of the modified enzyme is also increased by a 5-fold factor after modification by (1) (t1/2 of 9 days) and by a 3-fold factor after modification by (2) or (3) (t1/2 of 6 and 5 days respectively) in aqueous solution. When stored in 37.5% [MMIm][Me2PO4] (v:v), both modified and unmodified FDH have an increased half-life (t1/2 of 6–9 days). This grafting strategy is found to be good methods to mimic and study the stabilizing effect of ionic liquids on enzymes.  相似文献   

18.
《Process Biochemistry》2010,45(4):573-580
A batch test procedure, based on manometric measurements, was used to study the Anammox process, in particular the inhibition due to nitrite and the effects of hydroxylamine and hydrazine, indicated as possible intermediates of the process. The maximum nitrite removal rate (MNRR) was measured. The method showed good reliability with a standard error of 4.5 ± 3.3% (n: 41). All the tests were carried out on samples taken from a pilot plant with Anammox suspended biomass. The tests were used also to monitor the reactor activity. By testing different spiked additions of nitrite (10–75 mg NO2-N L−1), a short-term inhibition, with more than 25% MNRR decrease, was found at concentrations higher than 60 mg NO2-N L−1. Repeated additions of nitrite higher than 30 mg NO2-N L−1 caused losses of activity. After a complete loss of activity, spiked additions of hydroxylamine (30 mg N L−1 in total) determined a 20% permanent recovery. Low amounts of the intermediates (1–3 mg N L−1) applied on partially inhibited samples and uninhibited samples produced temporary increases in activity up to 50% and 30%, respectively.  相似文献   

19.
The relationship between light intensity, nitrogen availability and pigmentation was investigated in mixotrophic and heterotrophic cultures of the unicellular red alga Galdieria sulphuraria 074G, a potential host for production of the blue pigment, phycocyanin (PC). During the exponential growth phase of batch cultures, G. sulphuraria 074G contained 2–4 mg phycocyanin per g dry weight. In carbon-limited and nitrogen-sufficient batch cultures grown in darkness, this value increased to 8–12 mg g−1 dry weight during the stationary phase, whereas the phycocyanin content in nitrogen-deficient cells decreased to values below 1 mg g−1 dry weight during stationary phase. Light intensities between 0 and 100 μmol photons m−2 s−1 had no influence on phycocyanin accumulation in mixotrophic cultures grown on glucose or fructose, while light stimulated phycocyanin synthesis in cultures grown on glycerol, in which the phycocyanin content in stationary phase was increased from 10 mg g−1 dry weight in darkness to 20 mg g−1 dry weight at a light intensity of 80 μmol photons m−2 s−1. At higher light intensities, less phycocyanin accumulated than at lower intensities, irrespective of the carbon substrate used. In carbon-limited continuous flow cultures grown on glucose or glycerol at a dilution rate of 0.63 day−1, corresponding to 50% of the maximum specific growth rate, the highest steady-state phycocyanin content of 15–28 mg g−1 dry weight was found at 65 μmol photons m−2 s−1. In contrast to the apparent glucose repression of light-induced PC synthesis observed in batch cultures, no glucose repression of the light stimulation was observed in continuous flow cultures because the glucose concentration in the culture supernatant always remained at limiting levels. Despite the fact that G. sulphuraria 074G contains less phycocyanin than some other microalgae and cyanobacteria, the ability of G. sulphuraria 074G to grow and synthesize phycocyanin in heterotrophic or mixotrophic cultures makes it an interesting alternative to the cyanobacterium, Spirulina platensis presently used for synthesis of phycocyanin.  相似文献   

20.
A method for Selenocystine and Selenomethionine determination by LC–ES–MS was developed in this work. The mass spectrometer was used in a positive mode and the m/z used for the identification of Selenomethionine and Selenocystine were 198.35 and 337.15, respectively.The selenium species were separated using a LC system. A silica chromatographic column (ZORBAX Eclipse XDB-C8 of 50 mm length and 2.1 mm internal diameter (particle size 3.5 μm)) was used. The separation was realised in isocratic mode, using methanol:water (1:1) with 1% of acetic acid and a flow rate of 200 μL min−1. The developed method was precise (RSD of 4.5% and 3.9% for Selenomethionine and Selenocystine, respectively) and sensible (limit of detection (LOD) 0.06 and 0.99 mg L−1 for selenomethionine and selenocystine, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号