首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dissection of signal transduction pathways leading to actin polymerization has been performed in cytosolic extracts. In such assays, the implication of an effector molecule is demonstrated by the loss of actin polymerization upon its depletion and the restoration of actin polymerization upon its add-back. Two major limitations in the wide use of this approach have been the availability of immunodepleting antibodies and the functional redundancy for many classes of effector molecules encoded by vertebrate genomes. To circumvent these limitations, we developed extracts derived from S2 Drosophila cells, which are competent for actin polymerization. In this system, depleted extracts are simply obtained from cells cultured with long double stranded RNAs in the medium. We validated the method by showing that beads coated with the C-terminal domain of Wave2 were no longer able to trigger actin polymerization in an extract depleted of the Arp2/3 complex. We also examined the complete set of Drosophila small GTPases of the Rho family for their ability to polymerize actin in such extracts, and found that only dCdc42 was able to induce actin polymerization. Using RNAi depleted extract, we confirmed that dCdc42 triggers actin polymerization in a Wasp dependent manner.  相似文献   

2.
We identified a novel adaptor protein that contains a Src homology (SH)3 domain, SH3 binding proline-rich sequences, and a leucine zipper-like motif and termed this protein WASP interacting SH3 protein (WISH). WISH is expressed predominantly in neural tissues and testis. It bound Ash/Grb2 through its proline-rich regions and neural Wiskott-Aldrich syndrome protein (N-WASP) through its SH3 domain. WISH strongly enhanced N-WASP-induced Arp2/3 complex activation independent of Cdc42 in vitro, resulting in rapid actin polymerization. Furthermore, coexpression of WISH and N-WASP induced marked formation of microspikes in Cos7 cells, even in the absence of stimuli. An N-WASP mutant (H208D) that cannot bind Cdc42 still induced microspike formation when coexpressed with WISH. We also examined the contribution of WISH to a rapid actin polymerization induced by brain extract in vitro. Arp2/3 complex was essential for brain extract-induced rapid actin polymerization. Addition of WISH to extracts increased actin polymerization as Cdc42 did. However, WISH unexpectedly could activate actin polymerization even in N-WASP-depleted extracts. These findings suggest that WISH activates Arp2/3 complex through N-WASP-dependent and -independent pathways without Cdc42, resulting in the rapid actin polymerization required for microspike formation.  相似文献   

3.
BACKGROUND: Actin filaments polymerize in vivo primarily from their fast-growing barbed ends. In cells and extracts, GTPgammaS and Rho-family GTPases, including Cdc42, stimulate barbed-end actin polymerization; however, the mechanism responsible for the initiation of polymerization is unknown. There are three formal possibilities for how free barbed ends may be generated in response to cellular signals: uncapping of existing filaments; severing of existing filaments; or de novo nucleation. The Arp2/3 complex localizes to regions of dynamic actin polymerization, including the leading edges of motile cells and motile actin patches in yeast, and in vitro it nucleates the formation of actin filaments with free barbed ends. Here, we investigated actin polymerization in soluble extracts of Acanthamoeba. RESULTS: Addition of actin filaments with free barbed ends to Acanthamoeba extracts is sufficient to induce polymerization of endogenous actin. Addition of activated Cdc42 or activation of Rho-family GTPases in these extracts by the non-hydrolyzable GTP analog GTPgammaS stimulated barbed-end polymerization, whereas immunodepletion of Arp2 or sequestration of Arp2 using solution-binding antibodies blocked Rho-family GTPase-induced actin polymerization. CONCLUSIONS: For this system, we conclude that the accessibility of free barbed ends regulates actin polymerization, that Rho-family GTPases stimulate polymerization catalytically by de novo nucleation of free barbed ends and that the primary nucleation factor in this pathway is the Arp2/3 complex.  相似文献   

4.
BACKGROUND: Cdc42, a GTP-binding protein of the Rho family, controls actin cytoskeletal organization and helps to generate actin-based protruding structures, such as filopodia. In vitro, Cdc42 regulates actin polymerization by facilitating the creation of free barbed ends - the more rapidly growing ends of actin filaments - and subsequent elongation at these ends. The Wiskott- Aldrich syndrome protein, WASP, which has a pleckstrin-homology domain and a Cdc42/Rac-binding motif, has been implicated in cell signaling and cytoskeleton reorganization. We have investigated the consequences of local recruitment of activated Cdc42 or WASP to the plasma membrane. RESULTS: We used an activated Cdc42 protein that could be recruited to an engineered membrane receptor by adding rapamycin as a bridge, and added antibody-coupled beads to aggregate these receptors. Inducible recruitment of Cdc42 to clusters of receptors stimulated actin polymerization, resulting in the formation of membrane protrusions. Cdc42-induced protrusions were enriched in the vasodilator-stimulated phosphoprotein VASP and the focal-adhesion-associated proteins zyxin and ezrin. The Cdc42 effector WASP could also induce the formation of protrusions, albeit of different morphology. CONCLUSIONS: This is the first demonstration that the local recruitment of activated Cdc42 or its downstream effector, WASP, to a membrane receptor in whole cells is sufficient to trigger actin polymerization that results in the formation of membrane protrusions. Our data suggest that Cdc42-induced actin-based protrusions result from the local and serial recruitment of cytoskeletal proteins including zyxin, VASP, and ezrin.  相似文献   

5.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

6.
Actin polymerization at the immune synapse is required for T cell activation and effector function; however, the relevant regulatory pathways remain poorly understood. We showed previously that binding to antigen presenting cells (APCs) induces localized activation of Cdc42 and Wiskott-Aldrich Syndrome protein (WASP) at the immune synapse. Several lines of evidence suggest that Tec kinases could interact with WASP-dependent actin regulatory processes. Since T cells from Rlk-/-, Itk-/-, and Rlk-/- x Itk-/- mice have defects in signaling and development, we asked whether Itk or Rlk function in actin polymerization at the immune synapse. We find that Itk-/- and Rlk-/- x Itk-/- T cells are defective in actin polymerization and conjugate formation in response to antigen-pulsed APCs. Itk functions downstream of the TCR, since similar defects were observed upon TCR engagement alone. Using conformation-specific probes, we show that although the recruitment of WASP and Arp2/3 complex to the immune synapse proceeds normally, the localized activation of Cdc42 and WASP is defective. Finally, we find that the defect in Cdc42 activation likely stems from a requirement for Itk in the recruitment of Vav to the immune synapse. Our results identify Itk as a key element of the pathway leading to localized actin polymerization at the immune synapse.  相似文献   

7.
Enteropathogenic Escherichia coli (EPEC) subverts actin dynamics in eukaryotic cells by injecting effector proteins via a type III secretion system. First, WxxxE effector Map triggers transient formation of filopodia. Then, following recovery from the filopodial signals, EPEC triggers robust actin polymerization via a signalling complex comprising Tir and the adaptor proteins Nck. In this paper we show that Map triggers filopodia formation by activating Cdc42; expression of dominant-negative Cdc42 or knock-down of Cdc42 by siRNA impaired filopodia formation. In addition, Map binds PDZ1 of NHERF1. We show that Map–NHERF1 interaction is needed for filopodia stabilization in a process involving ezrin and the RhoA/ROCK cascade; expression of dominant-negative ezrin and RhoA or siRNA knock-down of RhoA lead to rapid elimination of filopodia. Moreover, we show that formation of the Tir-Nck signalling complex leads to filopodia withdrawal. Recovery from the filopodial signals requires phosphorylation of a Tir tyrosine (Y474) residue and actin polymerization pathway as both infection of cells with EPEC expressing TirY474S or infection of Nck knockout cells with wild-type EPEC resulted in persistence of filopodia. These results show that EPEC effectors modulate actin dynamics by temporal subverting the Rho GTPases and other actin polymerization pathways for the benefit of the adherent pathogen.  相似文献   

8.
Rho GTPases are molecular switches that modulate a variety of cellular processes, most notably those involving actin dynamics. We have previously shown that yeast vacuolar membrane fusion requires re-organization of actin filaments mediated by two Rho GTPases, Rho1p and Cdc42p. Cdc42p initiates actin polymerization to facilitate membrane tethering; Rho1p has a role in the late stages of vacuolar fusion, but its mode of action is unknown. Here, we identified eEF1A as a vacuolar Rho1p-interacting protein. eEF1A (encoded by the TEF1 and TEF2 genes in yeast) is an aminoacyl-tRNA transferase needed during protein translation. eEF1A also has a second function that is independent of translation; it binds and organizes actin filaments into ordered cable structures. Here, we report that eEF1A interacts with Rho1p via a C-terminal subdomain. This interaction occurs predominantly when both proteins are in the GDP-bound state. Therefore, eEF1A is an atypical downstream effector of Rho1p. eEF1A does not promote vacuolar fusion; however, overexpression of the Rho1p-interacting subdomain affects vacuolar morphology. Vacuoles were destabilized and prone to leakage when treated with the eEF1A inhibitor narciclasine. We propose a model whereby eEF1A binds to Rho1p-GDP on the vacuolar membrane; it is released upon Rho1p activation and then bundles actin filaments to stabilize fused vacuoles. Therefore, the Rho1p-eEF1A complex acts to spatially localize a pool of eEF1A to vacuoles where it can readily organize F-actin.  相似文献   

9.
Although small GTP-binding proteins of the Rho family have been implicated in signaling to the actin cytoskeleton, the exact nature of the linkage has remained obscure. We describe a novel mechanism that links one Rho family member, Cdc42, to actin polymerization. N-WASP, a ubiquitously expressed Cdc42-interacting protein, is required for Cdc42-stimulated actin polymerization in Xenopus egg extracts. The C terminus of N-WASP binds to the Arp2/3 complex and dramatically stimulates its ability to nucleate actin polymerization. Although full-length N-WASP is less effective, its activity can be greatly enhanced by Cdc42 and phosphatidylinositol (4,5) bisphosphate. Therefore, N-WASP and the Arp2/3 complex comprise a core mechanism that directly connects signal transduction pathways to the stimulation of actin polymerization.  相似文献   

10.
Shigella, the causative agent of bacillary dysentery, invades epithelial cells by locally reorganizing the actin cytoskeleton. Shigella invasion requires actin polymerization dependent on the Src tyrosine kinase and a functional bacterial type III secretion (T3S) apparatus. Using dynamic as well as immunofluorescence microscopy, we show that the T3S translocon component IpaC allows the recruitment of the Src kinase required for actin polymerization at bacterial entry sites during the initial stages of Shigella entry. Src recruitment occurred at bacterial-cell contact sites independent of actin polymerization at the onset of the invasive process and was still observed in Shigella strains mutated for translocated T3S effectors of invasion. A Shigella strain with a polar mutation that expressed low levels of the translocator components IpaB and IpaC was fully proficient for Src recruitment and bacterial invasion. In contrast, a Shigella strain mutated in the IpaC carboxyterminal effector domain that was proficient for T3S effector translocation did not induce Src recruitment. Consistent with a direct role for IpaC in Src activation, cell incubation with the IpaC last 72 carboxyterminal residues fused to the Iota toxin Ia (IaC) component that translocates into the cell cytosol upon binding to the Ib component led to Src-dependent ruffle formation. Strikingly, IaC also induced actin structures resembling bacterial entry foci that were enriched in activated Src and were inhibited by the Src inhibitor PP2. These results indicate that the IpaC effector domain determines Src-dependent actin polymerization and ruffle formation during bacterial invasion.  相似文献   

11.
Actinis a 42-kDa protein which, due to its ability to polymerize into filaments (F-actin), is one of the major constituents of the cytoskeleton. It has been proposed that MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) proteins play an important role in regulating the structure and mechanical properties of the actin cytoskeleton by cross-linking actin filaments. We have recently reported that peptides corresponding to the effector domain of MARCKS proteins promote actin polymerization and cause massive bundling of actin filaments. We now investigate the effect of MARCKS-related protein, a 20-kDa member of the MARCKS family, on both filament structure and the kinetics of actin polymerization in vitro. Our experiments document that MRP binds to F-actin with micromolar affinity and that the myristoyl chain at the N-terminus of MRP is not required for this interaction. In marked contrast to the effector peptide, binding of MRP is not accompanied by an acceleration of actin polymerization kinetics, and we also could not reliably observe an actin cross-linking activity of MRP.  相似文献   

12.
Actin polymerization at the cell cortex is thought to provide the driving force for aspects of cell-shape change and locomotion. To coordinate cellular movements, the initiation of actin polymerization is tightly regulated, both spatially and temporally. The Wiskott-Aldrich syndrome protein (WASP), encoded by the gene that is mutated in the immunodeficiency disorder Wiskott-Aldrich syndrome [1], has been implicated in the control of actin polymerization in cells [2] [3] [4] [5]. The Arp2/3 complex, an actin-nucleating factor that consists of seven polypeptide subunits [6] [7] [8], was recently shown to physically interact with WASP [9]. We sought to determine whether WASP is a cellular activator of the Arp2/3 complex and found that WASP stimulates the actin nucleation activity of the Arp2/3 complex in vitro. Moreover, WASP-coated microspheres polymerized actin, formed actin tails and exhibited actin-based motility in cell extracts, similar to those behaviors displayed by the pathogenic bacterium Listeria monocytogenes. In extracts depleted of the Arp2/3 complex, WASP-coated microspheres and L. monocytogenes were non-motile and exhibited only residual actin polymerization. These results demonstrate that WASP is sufficient to direct actin-based motility in cell extracts and that this function is mediated by the Arp2/3 complex. WASP interacts with diverse signaling proteins and may therefore function to couple signal transduction pathways to Arp2/3-complex activation and actin polymerization.  相似文献   

13.
In contrast to the slow rate of depolymerization of pure actin in vitro, populations of actin filaments in vivo turn over rapidly. Therefore, the rate of actin depolymerization must be accelerated by one or more factors in the cell. Since the actin dynamics in Listeria monocytogenes tails bear many similarities to those in the lamellipodia of moving cells, we have used Listeria as a model system to isolate factors required for regulating the rapid actin filament turnover involved in cell migration. Using a cell-free Xenopus egg extract system to reproduce the Listeria movement seen in a cell, we depleted candidate depolymerizing proteins and analyzed the effect that their removal had on the morphology of Listeria tails. Immunodepletion of Xenopus actin depolymerizing factor (ADF)/cofilin (XAC) from Xenopus egg extracts resulted in Listeria tails that were approximately five times longer than the tails from undepleted extracts. Depletion of XAC did not affect the tail assembly rate, suggesting that the increased tail length was caused by an inhibition of actin filament depolymerization. Immunodepletion of Xenopus gelsolin had no effect on either tail length or assembly rate. Addition of recombinant wild-type XAC or chick ADF protein to XAC-depleted extracts restored the tail length to that of control extracts, while addition of mutant ADF S3E that mimics the phosphorylated, inactive form of ADF did not reduce the tail length. Addition of excess wild-type XAC to Xenopus egg extracts reduced the length of Listeria tails to a limited extent. These observations show that XAC but not gelsolin is essential for depolymerizing actin filaments that rapidly turn over in Xenopus extracts. We also show that while the depolymerizing activities of XAC and Xenopus extract are effective at depolymerizing normal filaments containing ADP, they are unable to completely depolymerize actin filaments containing AMPPNP, a slowly hydrolyzible ATP analog. This observation suggests that the substrate for XAC is the ADP-bound subunit of actin and that the lifetime of a filament is controlled by its nucleotide content.  相似文献   

14.
Once adherens junctions (AJs) are formed between polarized epithelial cells they must be maintained because AJs are constantly remodeled in dynamic epithelia. AJ maintenance involves endocytosis and subsequent recycling of E-cadherin to a precise location along the basolateral membrane. In the Drosophila pupal eye epithelium, Rho1 GTPase regulates AJ remodeling through Drosophila E-cadherin (DE-cadherin) endocytosis by limiting Cdc42/Par6/aPKC complex activity. We demonstrate that Rho1 also influences AJ remodeling by regulating the formation of DE-cadherin–containing, Rab11-positive recycling endosomes in Drosophila postmitotic pupal eye epithelia. This effect of Rho1 is mediated through Rok-dependent, but not MLCK-dependent, stimulation of myosin II activity yet independent of its effects upon actin remodeling. Both Rho1 and pMLC localize on endosomal vesicles, suggesting that Rho1 might regulate the formation of recycling endosomes through localized myosin II activation. This work identifies spatially distinct functions for Rho1 in the regulation of DE-cadherin–containing vesicular trafficking during AJ remodeling in live epithelia.  相似文献   

15.
We have established a cell-free system to investigate pathways that regulate actin polymerization. Addition of GTPγS to lysates of polymorphonuclear leukocytes (PMNs) or Dictyostelium discoideum amoeba induced formation of filamentous actin. The GTPγS appeared to act via a small G-protein, since it was active in lysates ofD. discoideum mutants missing either the α2- or β-subunit of the heterotrimeric G-protein required for chemoattractant-induced actin polymerization in living cells. Furthermore, recombinant Cdc42, but not Rho or Rac, induced polymerization in the cell-free system. The Cdc42-induced increase in filamentous actin required GTPγS binding and was inhibited by a fragment of the enzyme PAK1 that binds Cdc42.

In a high speed supernatant, GTPγS alone was ineffective, but GTPγS-loaded Cdc42 induced actin polymerization, suggesting that the response was limited by guanine nucleotide exchange. Stimulating exchange by chelating magnesium, by adding acidic phospholipids, or by adding the exchange factors Cdc24 or Dbl restored the ability of GTPγS to induce polymerization. The stimulation of actin polymerization did not correlate with PIP2 synthesis.

  相似文献   

16.
Actinis a 42-kDa protein which, due to its ability to polymerize into filaments (F-actin), is one of the major constituents of the cytoskeleton. It has been proposed that MARCKS (an acronym for myristoylated alanine-rich C kinase substrate) proteins play an important role in regulating the structure and mechanical properties of the actin cytoskeleton by cross-linking actin filaments. We have recently reported that peptides corresponding to the effector domain of MARCKS proteins promote actin polymerization and cause massive bundling of actin filaments. We now investigate the effect of MARCKS-related protein, a 20-kDa member of the MARCKS family, on both filament structure and the kinetics of actin polymerization in vitro. Our experiments document that MRP binds to F-actin with micromolar affinity and that the myristoyl chain at the N-terminus of MRP is not required for this interaction. In marked contrast to the effector peptide, binding of MRP is not accompanied by an acceleration of actin polymerization kinetics, and we also could not reliably observe an actin cross-linking activity of MRP.  相似文献   

17.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that is expressed on the apical plasma membrane (PM) of epithelial cells. The most common deleterious allele encodes a trafficking-defective mutant protein undergoing endoplasmic reticulum-associated degradation (ERAD) and presenting lower PM stability. In this study, we investigated the involvement of the Cdc42 pathway in CFTR turnover and trafficking in a human bronchiolar epithelial cell line (CFBE41o-) expressing wild-type CFTR. Cdc42 is a small GTPase of the Rho family that fulfils numerous cell functions, one of which is endocytosis and recycling process via actin cytoskeleton remodelling. When we treated cells with chemical inhibitors such as ML141 against Cdc42 and wiskostatin against the downstream effector N-WASP, we observed that CFTR channel activity was inhibited, in correlation with a decrease in CFTR amount at the cell surface and an increase in dynamin-dependent CFTR endocytosis. Anchoring of CFTR to the cortical cytoskeleton was then presumably impaired by actin disorganization. When we performed siRNA-mediated depletion of Cdc42, actin polymerization was not impacted, but we observed actin-independent consequences upon CFTR. Total and PM CFTR amounts were increased, resulting in greater activation of CFTR. Pulse-chase experiments showed that while CFTR degradation was slowed, CFTR maturation through the Golgi apparatus remained unaffected. In addition, we observed increased stability of CFTR in PM and reduction of its endocytosis. This study highlights the involvement of the Cdc42 pathway at several levels of CFTR biogenesis and trafficking: (i) Cdc42 is implicated in the first steps of CFTR biosynthesis and processing; (ii) it contributes to the stability of CFTR in PM via its anchoring to cortical actin; (iii) it promotes CFTR endocytosis and presumably its sorting toward lysosomal degradation.  相似文献   

18.
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.  相似文献   

19.
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.  相似文献   

20.
Proteins of the Ras superfamily, Ras, Rac, Rho, and Cdc42, control the remodelling of the cortical actin cytoskeleton following growth factor stimulation. A major regulator of Ras, Ras-GAP, contains several structural motifs, including an SH3 domain and two SH2 domains, and there is evidence that they harbor a signalling function. We have previously described a monoclonal antibody to the SH3 domain of Ras-GAP which blocks Ras signalling in Xenopus oocytes. We now show that microinjection of this antibody into Swiss 3T3 cells prevents the formation of actin stress fibers stimulated by growth factors or activated Ras, but not membrane ruffling. This inhibition is bypassed by coinjection of activated Rho, suggesting that the Ras-GAP SH3 domain is necessary for endogenous Rho activation. In agreement, the antibody blocks lysophosphatidic acid-induced neurite retraction in differentiated PC12 cells. Furthermore, we demonstrate that microinjection of full-length Ras-GAP triggers stress fiber polymerization in fibroblasts in an SH3-dependent manner, strongly suggesting an effector function besides its role as a Ras downregulator. These results support the idea that Ras-GAP connects the Ras and Rho pathways and, therefore, regulates the actin cytoskeleton through a mechanism which probably does not involve p190 Rho-GAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号