首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The effects of nutrient loading on phytoplankton, zooplankton and macrozoobenthos in experimental ecosystems was studied in a 7-month experiment. The mesocosms were designed to mimic the major physical characteristics (irradiance, temperature, mixing) of the Dutch coastal zone in the river Rhine plume. Three different nutrient loading scenarios were used, representing present and future conditions. The level of the spring phytoplankton bloom was determined by phosphorus loading, whereas during summer the nitrogen loading determined phytoplankton biomass. The differences in nutrient loading did not result in shifts in phytoplankton species composition. With exception of the early phase of the spring bloom, diatoms dominated phytoplankton biomass in all nutrient treatments. This was ascribed to microzooplankton grazing on smaller algal species. Microzooplankton biomass showed a positive correlation with primary production, and also significant differences between nutrient treatments. Copepod development was limited, probably due to competition with microzooplankton and predation by benthic fauna. Macrobenthos biomass correlated with primary production, and was lower in the lowest nutrient treatment.  相似文献   

2.
Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such ‘regime shifts’ can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long‐term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi‐objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe.  相似文献   

3.
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed.  相似文献   

4.
Internal loading of phosphorus for the summers of 1972–1974 in the eutrophic Twin Lakes, Ohio, USA was calculated from nutrient budgets, and was found to account for 65–100% of the increase in phosphorus content of the lakes during this period. Recovery of lakes of this type after nutrient diversion may be delayed by internal loading and chemical inactivation of phosphorus may be needed. A discussion of sources of this internal loading is presented.  相似文献   

5.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

6.
Ding  Yanqing  Xu  Hai  Deng  Jianming  Qin  Boqiang  He  Youwen 《Hydrobiologia》2019,829(1):167-187
Hydrobiologia - An increased nutrient loading drives eutrophication of lake ecosystems. Nutrient loading has two different origins: (1) internal loading due to nutrients release from sediments and...  相似文献   

7.
Xu  Xinjian  Timmer  Victor R. 《Plant and Soil》1999,216(1-2):83-91
Nutrient loaded and non-loaded Chinese fir (Cunninghamia lanceolata (Lamb) Hook) seedlings were transplanted in a pot trial to examine effects of exponential nutrient loading and fertilization treatments on first season growth and N nutrition. The treatments tested four rates of N (0, 30, 60, and 90 mg tree-1) as a mixed NPK fertilizer applied before planting to create a soil fertility gradient, and two topdressings applied only to non-loaded seedlings later in the season. Nutrient loading alone consistently enhanced seedling growth on the four soil fertility classes, increasing respective biomass and N uptake 42, 45, 20 and 8%, and 65, 67, 29 and 18% more than non-loaded seedlings. The positive response was attributed to increased N retranslocation from higher nutrient reserves built up by loading during nursery culture. Net retranslocation from old shoots to new growth was highest soon after planting when nutrient stress was most severe. Pre-plant soil fertilization and post-plant topdressings were also effective in promoting seedling productivity, but equivalent additions yielded less biomass than that from nutrient loading alone. Implications are that exponential nutrient loading may be more efficient in improving early growth performance of Chinese fir seedlings than traditional field fertilization practices at plantation establishment, and may on competitive sites avoid problems of stimulating surrounding vegetation rather than trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
While extensive knowledge exists on the relationship between nutrient loading and nutrient concentrations in lakes in the cold temperate region, few studies have been conducted in warm lakes, not least in warm arid lakes. This is unfortunate as a larger proportion of the world’s lakes will be situated in arid climates in the future due to climate change and a larger proportion will suffer from a higher frequency of intensive drought. We conducted a comprehensive 11–13 year mass balance study in two interconnected shallow Mediterranean lakes in Turkey, covering a period with substantial changes in climate conditions. The upstream lake was only affected by natural changes in nutrient loading, while the downstream lake was additionally influenced by sewage diversion and restoration by fish removal. Contrasting to experience from north temperate lakes we found an increase in in-lake concentrations of total phosphorus and inorganic nitrogen (ammonia as well as nitrate) in dry years despite lower external nutrient loading, and submerged macrophytes did not increase the nitrogen retention capacity of the lakes. In contrast, fish removal modulated the nitrogen concentration as in north temperate lakes, but the effect was not long-lasting. Our results suggest that climate warming reduces the nutrient retention capacity of shallow lakes in the Mediterranean and exacerbates eutrophication. Lower thresholds of nutrient loading for shifting turbid shallow lakes to a clear water state are therefore to be expected in arid zones in a future warmer climate, with important management implications.  相似文献   

9.
Daily community rates of calcification, photosynthesis and respiration were measured on a coral reef located in the Northern Red Sea, Gulf of Eilat, Israel between March 2000 and March 2002. This reef is exposed to seasonally varying levels of inorganic nutrient loading due to mixing and stratification of the adjacent open sea water column. Net production measurements were positively and linearly correlated with open sea nutrient levels, and the community photosynthesis to respiration ratio varied between 0.9 and 1.7 accordingly. Community calcification varied between 30 ± 20 and 60 ± 20 mmol C m−2 day−1 during summer and winter, respectively. Under increased nutrient loading the relation between community calcification and aragonite saturation state is suppressed by 30% on average. Both of these findings demonstrate the deleterious effects of nutrient loading on coral reefs.  相似文献   

10.
Anthropogenic nutrient enrichment is increasingly modifying community structure and ecosystem functioning in terrestrial and aquatic ecosystems. In marine ecosystems, the paradigm is that nutrient enrichment leads to a decline of seagrasses by stimulating epiphytic algal growth, which shades and overgrows seagrasses. This ignores the potential for herbivores, which graze upon epiphytic algae, to partially or wholly counter such nutrient effects. We conducted a field experiment to assess the role that the trochid gastropod Calthalotia fragum plays in reducing nutrient impacts on the seagrass, Posidonia australis, in an urbanized Australian estuary, Botany Bay, Sydney. In a field experiment, where nutrient loading and grazer density were orthogonally manipulated, nutrient enrichment failed to promote epiphyte biomass or diminish growth and primary productivity of P. australis. To the contrary, nutrient enrichment enhanced photosynthesis of the seagrass in plots where the grazer was present at higher density. Epiphytic growth was negatively affected by increased C. fragum density, while P. australis shoot growth was positively influenced. Thus, in this study system, grazing appears to play a much greater role in determining seagrass primary productivity and above‐ground growth than moderate nutrient loading, suggesting that the interaction between grazers and nutrients depends on the relative levels of each. Our study contributes to a growing body of literature suggesting that effects of nutrient loading on benthic assemblages are not universally negative, but are dependent on the biotic and abiotic setting.  相似文献   

11.
The effects of 16 different combinations of nutrient load and agitation on yield, nutrient uptake and proximate chemical composition of the seaweed Ulva lactuca cultured in tanks were evaluated. Intensive fishpond outflow passed through seaweed tanks at four nutrient loading levels and four water agitation combinations of water exchange, bottom aeration and frequently changing water levels (an accelerated tide regime). Specific results from these outdoor experiments were examined further under controlled conditions in laboratory experiments. Agitation treatments affected the performance of U. lactuca only under TAN () load levels below 4 g N m−2 day−1; biofiltration of TAN was the parameter most affected. Biomass yields at each of the four nutrient loading levels were not significantly different between the agitation treatments. Protein content increased significantly with increasing nutrient loading. The agitation treatments had a slight effect on seaweed protein content only at the lowest nutrient loading levels. There were no significant differences in dissolved oxygen concentration, pH, and temperature among the agitation treatments at all nutrient loading levels. Under laboratory conditions, growth rates, protein content, and photosynthetic and biomass yield of the seaweed were affected by water velocity under low nutrient concentrations. It is concluded that the effect of air agitation under the conditions of these experiments was not directly related to photosynthesis, excess dissolved oxygen, or carbon limitation, but to the diffusion of macro nutrients from the water to the seaweed. Therefore, once nutrient concentrations are high enough (above about 4 μM of TAN with the other nutrients in their corresponding proportions), aeration per se is not essential for effective growth and biofiltration by seaweeds.  相似文献   

12.
Light, nutrient concentrations and phytoplankton photosynthesis were studied in a Lake Tahoe sediment plume during maximum spring runoff. They were compared with conditions in clear lake waters not influenced by inlets. In the plume, nutrient concentrations increased in proportion to sediment density whereas light transmission of water was reduced with little effect on the spectral composition except for red light. Light inhibition of photosynthesis at the lake surface was less pronounced in the plume than in clear water and light limitation occurred more rapidly in deeper layers. Evidence from both lake experiments and laboratory bioassays suggests that iron had the greatest stimulatory effect on both photosynthetic activity and biomass growth at maximum sediment densities near the stream inlet. Because of less surface inhibition, photosynthetic light energy utilization efficiency was usually higher in the sediment plume which occurred in relatively shallow areas near the shore. In order to estimate overall effects of enhanced turbidity associated with nutrient loading on Lake Tahoe's primary productivity, profiles taken in shallow areas near the lakeshore were extrapolated to the maximum depth of photosynthesis. Light limitation would cause decreasing productivity, but nutrient stimulation would make this effect less pronounced. The overall effect would depend on the extent of sediment loading relative to nutrient loading.  相似文献   

13.
Xu  Xinjian  Timmer  Victor R. 《Plant and Soil》1998,203(2):313-322
Containerized Chinese fir (Cunninghamia lanceolata (Lamb) Hook) were reared from seed at four fertilizer levels (0, 15, 45, 75 mg N seedling-1 season-1) and two topdressing schedules (conventional or exponential) for a 22-week greenhouse rotation to assess growth, nutrition and nutrient loading capacity of seedlings. Extra P supplemented high fertilization (or nutrient loading) treatments to test for induced deficiency of this element. The schedule and rate of fertilization significantly affected growth and nutrient dynamics of the seedlings. Steady-state nutrition and superior growth performance were achieved by seedlings fertilized exponentially at the operational dose (15 mg N), yielding 23, 72 and 52% more in respective biomass, N uptake and P uptake than seedlings fertilized conventionally at the equivalent dose. The improved growth and fertilizer efficiency were attributed to close synchronization of exponential nutrient supply with exponential growth and nutrient demand of plants. High dose exponential fertilization (45 and 75 mg N) induced steady state-nutrition late in the season, increasing seedling N and P uptake by 72–83% and 50–96% compared to low dose exponential fertilization, demonstrating effective nutrient loading of plants without changing biomass. The extra P stimulated P uptake without altering growth or N uptake, thus P was probably not limiting during the greenhouse culture despite high N additions.  相似文献   

14.
Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.  相似文献   

15.
We investigated the differential responses of invasive alien Lemna minuta and native Lemna minor to nutrient loading as well as the mechanism of competition between the species. The role of nutrients, species identity, species influence in determining the outcome of competition between the species was estimated using the Relative Growth Rate Difference (RGRD) model. The two species differed in their response to nutrient loading. The native L. minor responded indifferently to nutrient loading. The species Relative Growth Rate (RGR) was 0.10 d−1, 0.11 d−1 and 0.09 d−1 in high, medium and low nutrients, respectively. On the other hand, the invasive L. minuta responded opportunistically to high nutrient availability and had an RGR of 0.13 d−1, 0.10 d−1 and 0.08 d−1 in high, medium and low nutrients, respectively. As a result, the invasive species was dominant in high nutrient availability but lost to the native species at low nutrient availability. The invader formed approximately 60% and less than 50% of the stand final total dry biomass in high and low nutrient availability, respectively. Species RGR were reduced by both intra- and interspecific competition but intraspecific effects were stronger than interspecific effects. On the overall, the species significantly differed in their constant RGR. These differences in RGR between the species (species identity) and the differential response to nutrient loading were the main determinant of change in final biomass composition of these species in mixture. Species influence (competition) only had a small influence on the outcome of competition between the species. The observed species response to nutrient loading could be targeted in management of the invasive species. Lowering nutrients can be proposed to reduce the impact of the invasive L. minuta.  相似文献   

16.
A simple, rapid, and flexible modelling approach was applied to explore the impacts of climate change on hydrologic inputs and consequent implications for nutrient loading to Lake Mälaren, Sweden using a loading function model (GWLF). The first step in the process was to adapt the model for use in a large and complex Swedish catchment. We focused on the Galten basin with four rivers draining into the western region of Mälaren. The catchment model was calibrated and tested using long-term historical data for river discharge and dissolved nutrients (N, P). Then multiple regional climate model simulation results were downscaled to the local catchment level, and used to simulate possible hydrological and nutrient loading responses to warmer world scenarios. Climate change projections for the rivers of Galten basin show profound changes in the timing of discharge and nutrient delivery due to increased winter precipitation and earlier snow melt. Impacts on total annual discharge and load are minimal, but the alteration in river flow regime and the timing of nutrient delivery for future climate scenarios is strikingly different from historical conditions.  相似文献   

17.
Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat‐forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5‐fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching‐induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future.  相似文献   

18.
The Response of Experimental Rocky Shore Communities to Nutrient Additions   总被引:2,自引:0,他引:2  
The aim of this study was to determine whether the experimental nutrient enrichment of littoral rocky shore communities would be followed by a predicted accumulation of fast-growing opportunistic algae and a subsequent loss of perennial benthic vegetation. Inorganic nitrogen (N) and potassium (P) was added to eight concrete mesocosms inhabited by established littoral communities dominated by fucoids. The response to nutrient enrichment was followed for almost 2 1/2 years. Fast-growing opportunistic algae (periphyton and ephemeral green algae) grew significantly faster in response to nutrient enrichment, but the growth of red filamentous algae and large perennial brown algae was unaffected. However, these changes were not followed by comparable changes in the biomass and composition of the macroalgae. The biomass of opportunistic algae was stimulated only marginally by the nutrient enrichment, and perennial brown algae (fucoids) remained dominant in the mesocosm regardless of nutrient treatment level. Established rocky shore communities thus seem able to resist the effects of heavy nutrient loading. We found that the combined effects of the heavy competition for space and light imposed by canopy-forming algae, preferential grazing on opportunistic algae by herbivores, and physical disturbance, succeeded by a marked export of detached opportunistic algae, prevented the fast-growing algae from becoming dominant. However, recruitment studies showed that the opportunistic algae would become dominant when free space was available under conditions of high nutrient loading and low grazing pressure. These results show that established communities of perennial algae and associated fauna in rocky shore environments can prevent or delay the accumulation of bloom-forming opportunistic algae and that the replacement of long-lived macroalgae by opportunistic species at high nutrient loading may be a slow process. Nutrient enrichment may not, in itself, be enough to stimulate structural changes in rocky shore communities.  相似文献   

19.
1. To study the bottom‐up linkages in arctic lakes, we treated one side of a partitioned lake with inorganic nitrogen and phosphorus for a 6‐week period each summer for 6 years starting in the summer of 1985. We took a variety of weekly measurements to determine the impact of the nutrient loading on the lake and continued weekly measurements for 2–6 years after the cessation of nutrient loading to observe the recovery of the treated side. The loading rates (2.91 mmol N m?2 day?1 and 0.23 mmol P m?2 day?1) were five times the calculated loading rates for Toolik Lake, located nearby. 2. In all 6 years of nutrient addition, phytoplankton biomass and productivity were greater in the treated sector than the reference sector. In the first 4 years of nutrient addition there was no flux of phosphorus from the mineral‐rich sediments. This changed in the last 2 years of nutrient addition as phosphorus was released to the lake. 3. The response of the animal community to increased plant production was mixed. One of the four macro‐zooplankton species (Daphnia longiremis) increased in number by about twofold in the first 5 years. However, the copepod Cyclops scutifer showed no response during the treatment phase of the study. The benthic invertebrate response was also mixed. After a 2‐year lag time the snail Lymnaea elodes increased in the treated lake sector but chironomids did not. 4. Ecosystem response to fertilisation was not controlled solely by nutrient addition because phosphorus was not recycled from the sediments until the last 2 years of nutrient addition. Phytoplankton still showed the effects of nutrient addition in the recovery period and the hypolimnion of the treated sector was still anaerobic starting at 6 m in 1996.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号