首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Our objective was to examine the relative importance of local-scale disturbance by Siberian marmots in increasing regional (landscape-wide) plant richness. We used an additive diversity partitioning framework and quantified species richness patterns of grassland plant communities affected by marmot disturbance across different spatial scales: within and among on- and off-marmot-mound subsites, among sites, and among landscape units (corresponding to α and three levels of β richness). Values of β richness among subsites and β richness among landscape units were similar to those expected by chance. This suggests that plant species are randomly distributed among subsites and among landscape units, despite the prediction based on previous studies that local-scale disturbance by Siberian marmots and its interactive effects with landscape contexts disproportionately influence spatial patterns of plant species. Of the spatial components of regional richness, only the β richness among sites was significantly different from the expected value, probably reflecting the differential spatial pattern of disturbance by marmots at a site scale. The β richness among landscape units contributed the most to regional richness, whereas β richness among subsites and among sites contributed less. Thus, our results suggest that local-scale disturbance by Siberian marmots has little influence on regional plant richness in a Mongolian grassland.  相似文献   

2.
1. Additive partitioning of three measures of diversity (species richness, Shannon's diversity index H and Simpson's diversity D) was used to study the relationship between local and regional diversity of benthic macroinvertebrate communities of boreal lakes (littoral habitats) and streams (riffle habitats) across three spatial scales (sampling sites, ecoregions and biogeographic regions). 2. Alpha (α) and beta (β) diversity are defined as within‐habitat and between‐habitat diversity, respectively. According to the concept of additive partitioning, diversity can be partitioned across multiple spatial scales such that the total (γ) diversity on one spatial scale becomes within‐habitat (α) diversity at the next higher scale. Hence, the total diversity at one scale is determined by the α diversity and the between‐habitat diversity (β) at the next lower scale. Consequently, one of the advantages of additive partitioning is that it is possible to study simultaneously β diversity and the regional‐local species relationship and the scale dependence of α and β components. 3. For both lakes and streams α diversity was low for sites and ecoregions, whereas β diversity was high, indicating that among‐site factors are important in describing the variability among the lakes and streams studied here. 4. Weak, albeit significant, evidence was found for regional and local species saturation patterns. Multiple stepwise regression indicated that local processes might be more important in structuring lake‐littoral and stream‐riffle species assemblages than regional processes. From these results we conclude that environmental heterogeneity may act as an important factor contributing to species coexistence, resulting in the observed saturation patterns. 5. Our study supports the use of additive partitioning for identifying specific patterns of macroinvertebrate diversity on multiple spatial scales and the underlying processes generating these patterns. This information is needed to improve understanding of the relation between patterns and processes affecting (decreasing) trends in aquatic biodiversity.  相似文献   

3.
Background: Understanding the role of livestock grazing on plant diversity can be improved by an accurate measurement of diversity at all hierarchical scales due to the changeability of diversity components in space.

Aims: We evaluated the effects of grazing on plant species diversity at different scales of all common and rare species in two regions that have different climatic conditions (arid vs. semi-arid).

Methods: In each region, we collected abundant data of plant species from a nested sampling design that consisted of local (80 plots) and regional (16 sites) scales. We partitioned total species diversity (γ) into within plots (αl), among plots (βl) and among sites (β2) using the additive partitioning.

Results: Diversity among sites contributed the most to total diversity for all and rare plant species in both regions. In addition, α1 and β1 diversities in ungrazed areas were greater than those in grazed areas for all and common species in both climates.

Conclusion: Abandonment of grazing after 10 years resulted in significant regeneration of common species at the local scale, with no change in rare species. We conclude that low grazing intensity is likely to be an important tool for conservation of plant diversity in which all scales should be considered.  相似文献   

4.
Increasing demand for food, fuel and fibre promotes the intensification of land-use, particularly in areas favourable for agricultural production. In less-favourable areas, more wildlife-friendly farming systems are often either abandoned or under pressure of conversion, e.g. for bioenergy production. This raises the question, to which extent areas of different agronomic potential contribute to regional biodiversity. To approach this question on a regional scale, we established our study within a region where sites of high and low agronomic potential (AP) alternate on a small spatial scale. We selected 13 high-AP and 13 low-AP grasslands to quantify the contribution of these classes to the regional diversity of four epigeic arthropod taxa (ants, springtails, functional groups of ground beetles, and spiders). The regional diversity (γ) was partitioned into species richness per site (α-diversity), diversity among sites within one class (βwithin-diversity), and diversity between the two classes (βbetween-diversity). The β-diversity generally accounted for the largest share of the γ-diversity, with patterns of diversity components being highly taxon- and class-specific. Carnivorous carabids had a higher α-diversity at high-AP sites. Ants, springtails, and cursorial spiders had a higher βwithin-diversity in low-AP grasslands. Low-AP sites also harboured many more species that occurred exclusively in one grassland class. We conclude that grasslands that may be unfavourable for agricultural production contributed more to regional diversity of epigeic arthropods than favourable grasslands. We therefore suggest that future agricultural schemes should promote arthropod biodiversity by specifically targeting agri-environment schemes or other wildlife-friendly farming approaches to areas of low agronomic potential, since this bears the greatest potential to preserve a comparatively high species turnover (β-diversity) and in consequence high regional diversity.  相似文献   

5.
Nutrient-rich water bodies are usually expected to host low species richness at the local scale (water body). Nevertheless, they can support a diverse and sometimes unique biodiversity when diversity is considered at a regional scale. This discrepancy between the two scales is well documented for natural water bodies, but little is known about biodiversity of artificial water bodies, like fish ponds. We hypothesise that nutrient-rich water bodies can collectively host high species richness at the regional scale. Thus, these are important ecosystems for the regional conservation of biodiversity. We investigated 84 fish ponds in the Dombes region, France, with five taxonomic groups: macrophytes, phytoplankton, macroinvertebrates, dragonflies, and amphibians. Species richness patterns were determined for α- (single pond), β- (between ponds), and γ- (regional pond network) levels. For most studied species groups, richness per fish pond and at the regional level proved to be relatively high in comparison with natural ponds in other landscapes. Contribution of α-diversity to regional diversity was highest for dragonflies with 41 %, and lowest for amphibians and macrophytes with 16 and 18 %, respectively. For macroinvertebrate families and phytoplankton genera it was intermediate. Contribution of β-diversity to regional diversity was similar for all species groups with 22–25 %. Furthermore, some ponds hosted a large number of less frequent species and some endangered species, indicating that the conservation of biodiversity of fish ponds must be established at a regional scale.  相似文献   

6.
Planning riparian restoration to resemble historic reference conditions requires an understanding of both local and regional patterns of plant species diversity. Thus, understanding species distributions at multiple spatial scales is essential to improve restoration planting success, to enhance long‐term ecosystem functioning, and to match restoration planting designs with historic biogeographic distributions. To inform restoration planning, we examined the biogeographic patterns of riparian plant diversity at local and regional scales within a major western U.S.A. drainage, California's Sacramento—San Joaquin Valley. We analyzed patterns of species richness and complementarity (β‐diversity) across two scales: the watershed scale and the floodplain scale. At the watershed scale, spatial patterns of native riparian richness were driven by herbaceous species, whereas woody species were largely cosmopolitan across the nearly 38,000 km2 study area. At the floodplain scale, riparian floras reflected species richness and dissimilarity patterns related to hydrological and disturbance‐driven successional sequences. These findings reinforce the importance of concurrently evaluating both local and regional processes that promote species diversity and distribution of native riparian flora. Furthermore, as restoration activities become more prevalent across the landscape, strategies for restoration outcomes should emulate the patterns of species diversity and biogeographic distributions found at regional scales.  相似文献   

7.
To restore diversity of native vegetation, we must understand factors responsible for diversity in targeted communities. These factors operate at different spatial scales and may affect the number and relative abundances of species differently. We measured diversity of plant species and functional groups of species in replicated plots within paired restored and remnant (relic) tallgrass prairies at three locations in central Texas, U.S.A. To determine the contributions of species abundances and of spatial patterns of diversity to differences between prairie types, we separated diversity into richness and evenness (relative biomass) and into within‐plot (α), among‐plot (β), and prairie (γ) components. Species diversity was greater in remnant than in restored prairies at all spatial scales. At the γ scale, both species richness and species evenness were greater in remnants because of greater spatial variation in species composition. At the α scale, remnants were more diverse because of greater richness alone. Mean α richness correlated positively with the size of the species pool in restored prairies only, implying that in remnants, α richness was influenced more by colonization dynamics than by the number of species available for colonization. Plots in remnant prairies contained more functional groups and fewer species per group than did plots in restored prairies, suggesting that resource partitioning was greater in relic prairies. Our results are consistent with the interpretation that local ecological processes, like resource partitioning and limitations on seed dispersal, contribute to the greater diversity of remnant than restored prairies in central Texas. Restoration practices that limit abundances of competitive dominants, increase the number of species in seed mixtures, and increase the proximity of plants of different functional groups thus may be required to better simulate the plant diversity of tallgrass prairies.  相似文献   

8.
物种多样性格局随着时空尺度的变化而变化, 同时也与植被组织尺度的变化密切相关, 基于多组织尺度的研究能更好地揭示一个地区的物种多样性规律。在应用数量分类(TWINSPAN)和主成分分析法(PCA)确定黄土高原马栏林区不同组织尺度的群落类型及其相互关系的基础上, 采用加性分配法分析该区域物种多样性与植被型、群系和群丛3种植被组织尺度之间的关系, 结果表明: (1) 区域物种多样性(γ)可加性分配分为群丛内(α1)、群丛间(β1)、群系间(β2)和植被型间(β3) 4个多样性成分, 无论用物种丰富度指数还是Shannon-Wiener多样性或Simpson多样性指数, 乔木、灌木和草本植物的最大物种多样性都存在于群丛内(草本层的物种丰富度除外), 说明群丛尺度是度量该区物种多样性的最佳尺度。(2)植被型、群系和群丛3种组织尺度的Shannon-Wiener多样性百分比均大于Simpson多样性百分比, 说明稀有种的分布对马栏林区各植被组织尺度的物种多样性格局起主要作用。(3)各尺度间的β多样性大小顺序在乔木、灌木、草本植物3层以不同多样性指数表示时各不相同, 这与乔木、灌木、草本植物3层的物种组成和分布, 以及主导不同植被组织尺度的物种多样性的因素差异有密切联系。  相似文献   

9.
Understanding of the scaling of diversity is critical to enhance conservation strategies for subalpine moorland ecosystems vulnerable to future environmental changes. However, a paucity of quantitative data strongly limits such attempts. In this study, we used an additive diversity partitioning framework and quantified diversity patterns of moorland plant communities across hierarchical spatial scales, within- and between-sample transects, and between sites (corresponding to α and two levels of β diversity). Moorland sites markedly differed in size (range 1,000–160,000 m2) and were isolated from each other to varying extents within an inhospitable matrix (i.e., forests). We found that β diversity components were consistently higher, whereas the local α diversity component was consistently lower than expected by chance. We observed substantial contribution at the between-site scale to total species richness. By focusing on diversity patterns of moorland plant communities across multiple hierarchical spatial scales, we could thus identify the scale at which regional diversity is maximized. Our results suggest that protection of as many moorland sites as possible, to ensure beta diversity between sites, will effectively conserve total diversity. The use of additive diversity partitioning is a major step forward in providing strategies for the biological conservation of subalpine moorland ecosystems vulnerable to future environmental changes.  相似文献   

10.
This study investigates how yellow bluestem affects biodiversity in a typical Pannonian grassland. Beta diversity (i.e. the finescale spatial variability of species compositions), was estimated by the realized number of species combinations sampled at various scales. Sampling was performed by a standard protocol. Presences of plant species were recorded along 52.2 m long belt transect of 1044 units of 0.05x0.05 m contiguous microquadrats. According to the results the massive presence of tested C4 grass significantly reduced species richness of the grassland. Beta diversity assessment revealed that 90% of species combinations were lost due to yellow bluestem invasion. Fine-scale spatial pattern analyses showed complete local extinctions of other species from microsites dominated by yellow bluestem. This local extinction is enhanced by the specific clonal architecture of this species and by the accumulation of litter. Other dominant grasses had no effect on fine scale diversity, i.e. they could coexist well with other elements of the local flora. This study presents currently developed microhabitat types, forecasts and also draws attention to the danger that climate warming will probably enhance the spread of this detrimental C4 species.  相似文献   

11.
Aim Several lines of evidence suggest that beta diversity, or dissimilarity in species composition, should increase with productivity: (1) the latitudinal species richness gradient is most closely related to productivity and associated latitudinal beta‐diversity relationships have been described, and (2) the scale dependence of the productivity–diversity relationship implies that there should be a positive productivity–beta‐diversity relationship. However, such a pattern has not yet been demonstrated at broad scales. We test if there is a gradient of increasing beta diversity with productivity. Location Canada. Methods Canada was clustered into regions of similar productivity regimes along three remotely sensed productivity axes (minimum and integrated annual productivity, seasonality of productivity) and elevation. The overall (βj), turnover (βsim) and nestedness (βnes) components of beta diversity within each productivity regime were estimated with pairwise dissimilarity metrics and related to cluster productivity with partial linear regression and with spatial autoregression. Tests were performed for all species, productivity breadth‐based subsets (e.g. species occurring in many and a moderate number of productivity regimes), and pre‐ and post‐1970 butterfly records. Beta diversity between adjacent clusters along the productivity gradients was also evaluated. Results Within‐cluster βj and βsim increased with productivity and decreased with seasonality. The converse was true for βnes. All species subsets responded similarly; however, productivity–beta‐diversity relationships were weaker for the post‐1970 temporal subset and strongest for species of moderate breadth. Between‐cluster beta diversity (βj) and nestedness (βnes) declined with productivity. Main conclusions As predicted, beta diversity of communities within productivity regimes was observed to increase with productivity. This pattern was driven largely by a gradient of species turnover. Therefore, beta diversity may make an important contribution to the broad‐scale gradient of species richness with productivity. However, this species richness gradient dominates regional beta diversity between productivity regimes, resulting in decreasing between‐productivity dissimilarity with productivity driven by a concurrent decline in nestedness.  相似文献   

12.
Although many studies have investigated the influence of environmental patterns on local stream invertebrate diversity, there has been little consistency in reported relationships between diversity and particular environmental variables. Here we test the hypothesis that local stream invertebrate diversity is determined by a combination of factors occurring at multiple spatial scales. We developed predictive models relating invertebrate diversity (species richness and equitability) to environmental variables collected at various spatial scales (bedform, reach and catchment, respectively) using data from 97 sampling sites dispersed throughout the Taieri River drainage in New Zealand. Models based on an individual scale of perception (bedform, reach or catchment) were not able to match predictions to observations (r < 0.26, P > 0.01, between observed and predicted equitability and species richness). In contrast, models incorporating all three scales simultaneously were highly significant (P < 0.01; r = 0.55 and 0.64, between observed and predicted equitability and species richness, respectively). The most influential variables for both richness and equitability were median particle size at the bedform scale, adjacent land use at the reach scale, and relief ratio at the catchment scale. Our findings suggest that patterns observed in local assemblages are not determined solely by local mechanisms acting within assemblages, but also result from processes operating at larger spatial scales. The integration of different spatial scales may be the key to increasing model predictability and our understanding of the factors that determine local biodiversity.  相似文献   

13.
Aim Anthropogenic changes in land use may have major consequences for global biodiversity. However, species diversity is determined by a suite of factors that may affect species differently at different spatial scales. We tested the combined effects of land use and spatial scale on α, β and γ diversity in the tropics using experimental communities of cavity‐nesting bees and waSPS (Hymenoptera: Aculeata). We aimed to determine whether: (1) land‐use intensity negatively affects species richness of cavity‐nesting Hymenoptera, (2) β diversity, both within and between plots, is higher in more natural systems, (3) species richness of flowering herbs correlates positively with species richness of Hymenoptera within and across habitats, (4) richness of cavity‐nesting Hymenoptera in highly modified habitats declines with increasing distance from natural or semi‐natural habitats, (5) the effects of land use, herb diversity and forest distance on Hymenoptera α and β diversity vary at different spatial scales, and (6) bees and waSPS respond to land use in a similar way. Location Manabi, south‐west Ecuador. Methods We examined diversity (species richness) within 48 plots of five habitat types that comprised a gradient of decreasing agricultural intensity from rice and pasture to coffee agroforests, unmanaged abandoned agroforests and forest fragments, using standardized nesting resources for reproducing communities of cavity‐nesting bees and waSPS. Results (1) Land use significantly affected α diversity of trap‐nesting bees and waSPS at the subplot (per trap) scale, but not subplot β diversity or plot‐scale species richness (γ diversity). (2) Beta diversity was surprisingly higher between plots within a land‐use type than between land‐use types. (3) Species richness of bees and waSPS increased with diversity of flowering herbs at the subplot (trap) scale only. (4) Forest distance correlated positively with bee species richness at the plot scale only. (5) Land use, herb diversity and forest distance each showed significant correlations with bee and wasp diversity at only one spatial scale. (6) Despite differences in life history, bees and waSPS responded to land‐use intensity in a similar way. Main conclusions The effects of land use on species richness were highly dependent on spatial scale. Subplot‐scale analyses showed that rice and pasture contained the highest species diversity, whereas plot‐scale analyses showed no significant difference in the diversity of different land‐use types. We emphasize caution in the estimation of biodiversity at only one spatial scale, and highlight the surprisingly large contribution of managed land to the regional biodiversity of these species.  相似文献   

14.
Previous work has shown exotic and native plant species richness are negatively correlated at fine spatial scales and positively correlated at broad spatial scales. Grazing and invasive plant species can influence plant species richness, but the effects of these disturbances across spatial scales remain untested. We collected species richness data for both native and exotic plants from five spatial scales (0.5–3000 m2) in a nested, modified Whittaker plot design from severely grazed and ungrazed North American tallgrass prairie. We also recorded the abundance of an abundant invasive grass, tall fescue (Schedonorus phoenix (Scop.) Holub), at the 0.5-m2 scale. We used linear mixed-effect regression to test relationships between plant species richness, tall fescue abundance, and grazing history at five spatial scales. At no scale was exotic and native species richness linearly related, but exotic species richness at all scales was greater in grazed tracts than ungrazed tracts. Native species richness declined with increasing tall fescue abundance at all five spatial scales, but exotic species richness increased with tall fescue abundance at all but the broadest spatial scales. Severe grazing did not reduce native species richness at any spatial scale. We posit that invasion of tall fescue in this working landscape of originally native grassland plants modifies species richness-spatial scale relationships observed in less disturbed systems. Tall fescue invasion constitutes a unique biotic effect on plant species richness at broad spatial scales.  相似文献   

15.
16.
Recent developments of molecular tools have revolutionized our knowledge of microbial biodiversity by allowing detailed exploration of its different facets and generating unprecedented amount of data. One key issue with such large datasets is the development of diversity measures that cope with different data outputs and allow comparison of biodiversity across different scales. Diversity has indeed three components: local (α), regional (γ) and the overall difference between local communities (β). Current measures of microbial diversity, derived from several approaches, provide complementary but different views. They only capture the β component of diversity, compare communities in a pairwise way, consider all species as equivalent or lack a mathematically explicit relationship among the α, β and γ components. We propose a unified quantitative framework based on the Rao quadratic entropy, to obtain an additive decomposition of diversity (γ = α + β), so the three components can be compared, and that integrate the relationship (phylogenetic or functional) among Microbial Diversity Units that compose a microbial community. We show how this framework is adapted to all types of molecular data, and we highlight crucial issues in microbial ecology that would benefit from this framework and propose ready‐to‐use R‐functions to easily set up our approach.  相似文献   

17.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

18.
The arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local-regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= alpha diversity) and regional species richness was estimated at the pasture level (= gamma diversity) with the 'first-order-Jackknife' estimator. Three related issues were addressed: (i). the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii). quantification of the relative contributions of alpha and beta diversity to regional diversity using additive partitioning; and (iii). the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing beta-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.  相似文献   

19.
The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22 % were shredders. Biodiversity of shredders was described by alpha (αaverage ), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6–115 and average per site of 37.29?±?3.48 SE) from 31 taxa with 2–13 taxa per site (αaverage?=?6.98?±?0.33 SE) and 10–15 taxa per catchment (γ?=?13.33?±?0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj-R 2?=?0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj-R 2?=?0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity (r 2?=?0.161 and 0.237, respectively) as well as abundance of shredders (r 2?=?0.235). Canopy cover was correlated positively with β diversity (r 2?=?0.378) and abundance (r 2?=?0.266), meanwhile altitude was correlated positively with β (quadratic: r 2?=?0.175), γ diversity (quadratic: r 2?=?0.848) as well as abundance (quadratic: r 2?=?0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.  相似文献   

20.
  1. Mountain streams in southwestern European Alps are currently shifting from perennial to intermittent flow due to the combined effects of climate change and local anthropogenic pressures. Given that flow intermittency is a recently documented phenomenon in the Alps, only scattered studies have investigated functional and taxonomical diversity of benthic invertebrate communities in recently intermittent Alpine streams.
  2. We used a hierarchical sampling design to investigate patterns in taxonomic and functional diversity of benthic invertebrate communities in 13 recently intermittent Alpine streams in north-west Italy. in April 2017, we sampled benthic communities in two reaches of each stream with different hydrological conditions: a control reach, with permanent flow; and an intermittent reach, which recently experienced non-flow periods in summer.
  3. We tested for the response of taxonomic richness at multiple spatial scales by partitioning total diversity into the average richness of local communities and the richness due to variation among local communities both within and among reaches. By partitioning total diversity (γ) into its local (α) and turnover (β) components we showed a decrease in local and regional species richness both within and among reaches, whereas variation among communities was significantly lower in intermittent reaches at the reach scale only.
  4. The analysis of multidimensional trait space of macroinvertebrate communities in reaches with different hydrological conditions revealed a significant reduction of functional diversity, dispersion, and evenness in intermittent reaches. There was trait overdispersion in intermittent reaches, as these hosted both typical Alpine taxa and organisms adapted to flow intermittency. In particular, we observed the replacement of taxa with aquatic respiration and those preferring medium- to fast-flowing oligotrophic waters by taxa adapted to lentic habitats, air breathing and with larval dormancy phases.
  5. These results indicate that recent flow intermittency has caused drastic changes in benthic invertebrate communities in Alpine streams. Our work highlights the importance of integrating taxonomic and functional diversity to thoroughly assess the impacts of flow intermittency.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号