首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical and empirical evidence suggest that limb joint surface morphology is mechanically related to joint mobility, stability, and strength. This study tests hypotheses relating aspects of joint surface shape to joint function by comparing carpal joint size and curvature among strepsirhine primates that differ significantly in their positional behaviors and hand postures: vertical clingers, active arboreal quadrupeds, and slow cautious climbers. Joints that are very mobile are expected to have increased size and curvature of male joint mating surfaces, whereas those that function primarily in weight-bearing are expected to have relatively expanded female joint mating surfaces. Results show that 1) high male joint mating surface curvature is related to increased joint mobility and 2) increased female joint mating surface curvature is related to increased joint stability under loads of different orientation. Arc lengths of both male and female joint mating surfaces do not differ significantly between locomotor groups. Moreover, carpal joint curvature is not significantly correlated with either joint size (arc length) or body size, but carpal joint size and body size are highly correlated with one another. Relative to body size, articular arc lengths scale close to isometry (geometric similarity) both within and among groups. These results suggest that structural changes leading to increased joint mobility involve modifying joint surface curvature, and in the case of the carpal joints do not include altering joint size. Curvature of female joint mating surfaces appears related to variation in load orientation, but not necessarily load magnitude and frequency. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.  相似文献   

3.
Inverse dynamic optimization is a popular method for predicting muscle and joint reaction forces within human musculoskeletal joints. However, the traditional formulation of the optimization method does not include the joint reaction moment in the moment equilibrium equation, potentially violating the equilibrium conditions of the joint. Consequently, the predicted muscle and joint reaction forces are coordinate system-dependent. This paper presents an improved optimization method for the prediction of muscle forces and joint reaction forces. In this method, the location of the rotation center of the joint is used as an optimization variable, and the moment equilibrium equation is formulated with respect to the joint rotation center to represent an accurate moment constraint condition. The predicted muscle and joint reaction forces are independent of the joint coordinate system. The new optimization method was used to predict muscle forces of an elbow joint. The results demonstrated that the joint rotation center location varied with applied loading conditions. The predicted muscle and joint reaction forces were different from those predicted by using the traditional optimization method. The results further demonstrated that the improved optimization method converged to a minimum for the objective function that is smaller than that reached by using the traditional optimization method. Therefore, the joint rotation center location should be involved as a variable in an inverse dynamic optimization method for predicting muscle and joint reaction forces within human musculoskeletal joints.  相似文献   

4.
5.
This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.  相似文献   

6.
In the single-joint torque exertion task, which has been widely used to control muscle activity, only the relevant joint torque is specified. However, the neglect of the neighboring joint could make the procedure unreliable, considering our previous result that even monoarticular muscle activity level is indefinite without specifying the adjacent joint torque. Here we examined the amount of hip joint torque generated with knee joint torque and its influence on the activity of the knee joint muscles. Twelve healthy subjects were requested to exert various levels of isometric knee joint torque. The knee and hip joint torques were obtained by using a custom-made device. Because no information about hip joint torque was provided to the subjects, the hip joint torque measured here was a secondary one associated with the task. The amount of hip joint torque varied among subjects, indicating that they adopted various strategies to achieve the task. In some subjects, there was a considerable internal variability in the hip joint torque. Such variability was not negligible, because the knee joint muscle activity level with respect to the knee joint torque, as quantified by surface electromyography (EMG), changed significantly when the subjects were requested to change the strategy. This change occurred in a very systematic manner: in the case of the knee extension, as the hip flexion torque was larger, the activity of mono- and biarticular knee extensors decreased and increased, respectively. These results indicate that the conventional single knee joint torque exertion has the drawback that the intersubject and/or intertrial variability is inevitable in the relative contribution among mono- and biarticular muscles because of the uncertainty of the hip joint torque. We discuss that the viewpoint that both joint torques need to be considered will bring insights into various controversial problems such as the shape of the EMG-force relationship, neural factors that help determine the effect of muscle strength training, and so on.  相似文献   

7.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

8.
This paper describes a new non-orthogonal decomposition method to determine effective torques for three-dimensional (3D) joint rotation. A rotation about a joint coordinate axis (e.g. shoulder internal/external rotation) cannot be explained only by the torque about the joint coordinate axis because the joint coordinate axes usually deviate from the principal axes of inertia of the entire kinematic chain distal to the joint. Instead of decomposing torques into three orthogonal joint coordinate axes, our new method decomposes torques into three "non-orthogonal effective axes" that are determined in such a way that a torque about each effective axis produces a joint rotation only about one of the joint coordinate axes. To demonstrate the validity of this new method, a simple internal/external rotation of the upper arm with the elbow flexed at 90 degrees was analyzed by both orthogonal and non-orthogonal decomposition methods. The results showed that only the non-orthogonal decomposition method could explain the cause-effect mechanism whereby three angular accelerations at the shoulder joint are produced by the gravity torque, resultant joint torque, and interaction torque. The proposed method would be helpful for biomechanics and motor control researchers to investigate the manner in which the central nervous system coordinates the gravity torque, resultant joint torque, and interaction torque to control 3D joint rotations.  相似文献   

9.
An analytical, dynamic model of the human knee joint has been developed to simulate the unloaded knee joint behaviour in 6 degrees of freedom. It is based on extensive robot-based measurements of the elastic properties of a human cadaver knee joint. The measured data are compared with data from the literature to ensure that a proper database for modelling is used. The analytical modelling of the passive elastic joint properties is done with Local Linear Model Trees. The deduced knee joint model incorporates passive elastic properties of the internal knee joint structures, passive elastic muscle forces, damping forces, gravitational forces, and external forces. There are two sets of parameters, one simulating the movement of the intact knee joint, and a second simulating the knee joint with ruptured anterior cruciate ligament. The dynamic model can be easily processed in real-time. It is implemented in the haptic display of the Munich Knee Joint Simulator (MKS), which enables a person to move a plastic leg driven by a robot manipulator and feel the simulated knee joint force. Orthopaedic physicians judged the performance of the dynamic knee joint model by executing physical knee joint tests at the MKS.  相似文献   

10.
BACKGROUND: The management of soft tissue balance during surgery is essential for the success of total knee arthroplasty (TKA) but remains difficult, leaving it much to the surgeon's feel. Previous assessments for soft tissue balance have been performed under unphysiological joint conditions, with patellar eversion and without the prosthesis only at extension and 90 deg of flexion. We therefore developed a new tensor for TKA procedures, enabling soft tissue balance assessment throughout the range of motion while reproducing postoperative joint alignment with the patellofemoral (PF) joint reduced and the tibiofemoral joint aligned. Our purpose in the present study was to clarify joint gap kinematics using the tensor with the CT-free computer assisted navigation system. METHOD OF APPROACH: Joint gap kinematics, defined as joint gap change during knee motion, was evaluated during 30 consecutive, primary posterior-stabilized (PS) TKA with the navigation system in 30 osteoarthritic patients. Measurements were performed using a newly developed tensor, which enabled the measurement of the joint gap throughout the range of motion, including the joint conditions relevant after TKA with PF joint reduced and trial femoral component in place. Joint gap was assessed by the tensor at full extension, 5 deg, 10 deg, 15 deg, 30 deg, 45 deg, 60 deg, 90 deg, and 135 deg of flexion with the patella both everted and reduced. The navigation system was used to obtain the accuracy of implantations and to measure an accurate flexion angle of the knee during the intraoperative joint gap measurement. RESULTS: Results showed that the joint gap varied depending on the knee flexion angle. Joint gap showed an accelerated decrease during full knee extension. With the PF joint everted, the joint gap increased throughout knee flexion. In contrast, the joint gap with the PF joint reduced increased with knee flexion but decreased after 60 deg of flexion. CONCLUSIONS: We clarified the characteristics of joint gap kinematics in PS TKA under physiological and reproducible joint conditions. Our findings can provide useful information for prosthetic design and selection and allow evaluation of surgical technique throughout the range of knee motion that may lead to consistent clinical outcomes after TKA.  相似文献   

11.
Effects of moment arm length on kinetic outputs of a musculoskeletal system (muscle force development, joint moment development, joint power output and joint work output) were evaluated using computer simulation. A skeletal system of the human ankle joint was constructed: a lower leg segment and a foot segment were connected with a hinge joint. A Hill-type model of the musculus soleus (m. soleus), consisting of a contractile element and a series elastic element, was attached to the skeletal system. The model of the m. soleus was maximally activated, while the ankle joint was plantarflexed/dorsiflexed at a variation of constant angular velocities, simulating isokinetic exercises on a muscle testing machine. Profiles of the kinetic outputs (muscle force development, joint moment development, joint power output and joint work output) were obtained. Thereafter, the location of the insertion of the m. soleus was shifted toward the dorsal/ventral direction by 1cm, which had an effect of lengthening/shortening the moment arm length, respectively. The kinetic outputs of the musculoskeletal system during the simulated isokinetic exercises were evaluated with these longer/shorter moment arm lengths. It was found that longer moment arm resulted in smaller joint moment development, smaller joint power output and smaller joint work output in the larger plantarflexion angular velocity region (>120 degrees/s). This is because larger muscle shortening velocity was required with longer moment arm to achieve a certain joint angular velocity. Larger muscle shortening velocity resulted in smaller muscle force development because of the force-velocity relation of the muscle. It was suggested that this phenomenon should be taken into consideration when investigating the joint moment-joint angle and/or joint moment-joint angular velocity characteristics of experimental data.  相似文献   

12.
Muscles are significant contributors to the high joint forces developed in the knee during human walking. Not only do muscles contribute to the knee joint forces by acting to compress the joint, but they also develop joint forces indirectly through their contributions to the ground reaction forces via dynamic coupling. Thus, muscles can have significant contributions to forces at joints they do not span. However, few studies have investigated how the major lower-limb muscles contribute to the knee joint contact forces during walking. The goal of this study was to use a muscle-actuated forward dynamics simulation of walking to identify how individual muscles contribute to the axial tibio-femoral joint force. The simulation results showed that the vastii muscles are the primary contributors to the axial joint force in early stance while the gastrocnemius is the primary contributor in late stance. The tibio-femoral joint force generated by these muscles was at times greater than the muscle forces themselves. Muscles that do not cross the knee joint (e.g., the gluteus maximus and soleus) also have significant contributions to the tibio-femoral joint force through their contributions to the ground reaction forces. Further, small changes in walking kinematics (e.g., knee flexion angle) can have a significant effect on the magnitude of the knee joint forces. Thus, altering walking mechanics and muscle coordination patterns to utilize muscle groups that perform the same biomechanical function, yet contribute less to the knee joint forces may be an effective way to reduce knee joint loading during walking.  相似文献   

13.
14.
This paper deals with the mechanical and electromyographic evaluation of the mechanism generating and transmitting the resultant leg extension force by maximal isometric contraction in two directions, the knee and hip joint being kept at 90 degrees. The two directions were a) from the center of gravity of the body to the ankle joint and b) from a point near the knee to the ankle. Six male subjects in a supine position exerted a maximal leg extension force of 47-112 kg for a) and 51-73 kg for b). These values were close to the smaller values of two forces estimated at the knee and at the hip from maximal isometric forces at the corresponding joint of the same joint angle. It was thus suggested that the joint limiting the resultant leg extension force was the knee for a) and the hip for b). The single joint muscles exhibited almost maximal activities when they concerned the joint which limited the resultant leg extension force. The double joint muscles were often contracted only moderately during the maximal isometric leg extension, indicating a different role of double joint muscles even at the maximal force production at a particular joint.  相似文献   

15.
The forefoot functions as the base of support during late stance, rotating about the dual-axis of the metatarsophalangeal joints. Previous research has shown that joint axis definition affects estimated joint moments about the forefoot. However, little is known about how metatarsophalangeal joint center definition affects estimated joint kinetics. This study compared moments about the metatarsophalangeal joint using four different defined joint centers. There was a significant difference (p < .001) in peak moments between joint center definitions, differing by up to 0.488 N-m/kg for the slow and 0.878 N-m/kg for the fast running speeds tested. Additionally, there was a significant difference (p < .001) for when peak plantar flexor moment occurred during the slower running condition. The more posteriorly oriented joint centers resulted in higher moments and earlier onset of the plantar flexor moment. In addition to careful modeling of the metatarsophalangeal joint axis, it is recommended that joint center definition should be considered as well.  相似文献   

16.
S Takai 《Acta anatomica》1984,119(3):161-164
The structural component of the arches of the human foot were analyzed by a radiogrammetric method and multivariate statistical procedures. The right feet of 101 male university students were radiographed in the standing position from a lateromedial direction. 6 joint heights were measured directly on the radiographs. Factor analysis with varimax rotation showed 3 basic underlying factors for arch heights: (1) calcaneonavicular joint, cuneonavicular joint and first tarsometatarsal joint; (2) calcaneocuboidal joint and 5th tarsometatarsal joint and (3) subtalar joint. The first factor represented the medial longitudinal arch height, the second was associated with the lateral longitudinal arch height. No transverse factor indicating tarsometatarsal or transverse tarsal joints was found. Cluster analysis showed a similar configuration to that in factor analysis. Analysis suggested a key role of the subtalar joint which integrated both the medial and lateral longitudinal arch heights.  相似文献   

17.
Although the interpretability and reliability of joint kinematics depends strongly on the accuracy and precision of determining the anatomical frame (AF) orientation, the exact dependency of joint angle error on AF misalignment is still not clear. To fully understand the behavior, this study uses linear perturbations to quantify joint angle error due to known modifications of the AFs, where the joint angles are calculated according to the Cardanic convention. The result is a functional representation of joint angle error with dependence on nominal joint angles and on the orientations of the alternative AFs relative to the nominal AFs. The results are validated using numerical analysis on knee joint angle data during walking. The derived relationship elucidates results from previous work studying this effect and allows AF differences to be inferred by joint angle curves when multiple sets of joint angle curves are collected simultaneously.  相似文献   

18.
19.
It is commonly accepted that vertical jump performance is a good indicator of maximal joint power. Some studies, however, have indicated that knee joint power output in the vertical jump is limited due to forward trunk inclination early in the push-off. The aim of this experimental study was to investigate the effect of forward trunk inclination on joint power output in vertical jumping. A group of 20 male subjects performed maximal vertical countermovement jumps from stance while minimizing the contribution of arm swing by holding their hands on their hips (arms akimbo). They also performed maximal jumps while holding the trunk as upright as possible throughout the jump, still holding the arms akimbo. Jump height, joint kinematics (angles), and joint kinetics (torque, power) were calculated. Jump height of vertical jumps while holding the trunk upright was 10% less than in normal jumps. Hip joint power was decreased by 37% while knee joint power was increased by 13%. Ankle joint power did not change. These results demonstrated that maximal jump performance does not necessarily represent maximal power of each individual joint. The implication is that jump performance may well be a good representation of overall joint power; it is, however, not an accurate measure to evaluate maximal individual joint power as part of contemporary training and rehabilitation methods.  相似文献   

20.
The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were collected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (alpha = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号