首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of continuous beds (monoliths) as separation materials is connected with their better chromatographic properties and easier preparation in comparison to particulate-packed columns. Moreover the tuning of porosity as well as surface chemistry can lead to obtaining of highly selective materials, especially useful in separation of biologically important compounds or even microorganisms. To obtain high selectivity for such analytes as e.g. proteins, it is often important to have a knowledge about their shape, size, charge and finally charge distribution. This article presents our considerations on the charge distribution on the monolithic stationary phase and surface of such species as proteins or microorganisms as well as its eventual influence on the separation or sample preparation processes and tuning of their selectivity.  相似文献   

2.
A novel analysis and representation of the protein surface in terms of electrostatic binding complementarity and selectivity is presented. The charge optimization methodology is applied in a probe-based approach that simulates the binding process to the target protein. The molecular surface is color coded according to calculated optimal charge or according to charge selectivity, i.e., the binding cost of deviating from the optimal charge. The optimal charge profile depends on both the protein shape and charge distribution whereas the charge selectivity profile depends only on protein shape. High selectivity is concentrated in well-shaped concave pockets, whereas solvent-exposed convex regions are not charge selective. This suggests the synergy of charge and shape selectivity hot spots toward molecular selection and recognition, as well as the asymmetry of charge selectivity at the binding interface of biomolecular systems. The charge complementarity and selectivity profiles map relevant electrostatic properties in a readily interpretable way and encode information that is quite different from that visualized in the standard electrostatic potential map of unbound proteins.  相似文献   

3.
A series of 10 synthetic peptides containing varying degrees of charge and hydrophobicity was used to study the effects of peptide composition and buffer pH on the selectivity of separations by capillary zone electrophoresis (CZE). A simple model is used to explain the effect of buffer pH on the separation. It was found that pH is an important parameter affecting the selectivity of CZE separations. Furthermore, it is shown that the selectivity of the separation is such that peptides differing in neutral amino acid composition can be resolved, and that even differences in a peptide's amino acid sequence can be detected. A protease digest of beta-lactoglobulin A is shown as a practical example of a separation of a complex peptide mixture.  相似文献   

4.
Polymer‐based protein recognition systems have enormous potential within clinical and diagnostic fields due to their reusability, biocompatibility, ease of manufacturing, and potential specificity. Imprinted polymer matrices have been extensively studied and applied as a simple technique for creating artificial polymer‐based recognition gels for a target molecule. Although this technique has been proven effective when targeting small molecules (such as drugs), imprinting of proteins have so far resulted in materials with limited selectivity due to the large molecular size of the protein and aqueous environment. Using coarse‐grained molecular simulation, we investigate the relation between protein makeup, polymer properties, and the selectivity of imprinted gels. Nonspecific binding that results in poor selectivity is shown to be strongly dependent on surface chemistry of the template and competitor proteins as well as on polymer chemistry. Residence time distributions of proteins diffusing within the gels provide a transparent picture of the relation between polymer constitution, protein properties, and the nonspecific interactions with the imprinted gel. The pronounced effect of protein surface chemistry on imprinted gel specificity is demonstrated.  相似文献   

5.
The electrophoretic mobility of microorganisms (EPM) as a measure of their electric surface charge was determined as a function of different milieu conditions with the aid of the “Parmoquant 2” cell electrophoresis apparatus manufactured by CARL ZEISS Jena. The object of these researches was to examine the influence of the electric surface charge of microorganisms on their metal loading capacity. The results show a direct correlation between the electric surface charge or the EPM of microorganisms and their maximum metal loading capacity. Cells with a high negative surface also posses a high metal binding capacity. On the other side only a negligible metal uptake can be observed at the isoelectric point of the microorganisms (EPM = 0). The method of cell electrophoresis proved suitable to analyze complex interactions between microorganisms and heavy metal ions.  相似文献   

6.
《MABS-AUSTIN》2013,5(6):1113-1121
ABSTRACT

Charge variants are important attributes of monoclonal antibodies, including antibody-drug conjugates (ADCs), because charge variants can potentially influence the stability and biological activity of these molecules. Ion exchange chromatography (IEX) is widely used for charge variants analysis of mAbs and offers the feasibility of fractionation for in-depth characterization. However, the conjugated linker-drug on ADCs could potentially affect the separation performance of IEX, considering IEX separation relies on surface charge distribution of analyte and involves the interaction between analyte surface and IEX stationary phase. Here, we investigated weak cation exchange chromatography (WCX) for its application in analyzing three ADCs (two broad distribution ADCs and an ADC with controlled conjugation sites) and the 2-drug/4-drug loaded species isolated from the two broad distribution ADCs using hydrophobic interaction chromatography. The major peaks in WCX profile were characterized via fraction collection followed by capillary electrophoresis-sodium dodecyl sulfate or peptide mapping. Results suggested that both the number of drug loads and conjugation sites could impact WCX separation of an ADC. The hypothesis was that the linker drugs could interfere with the ionic interaction between its surrounding amino acids on the mAb surface and column resin, which reduced the retention of ADCs on WCX column in this study. Our results further revealed that WCX brings good selectivity towards positional isomers, but limited resolution for different drug load, which causes the peak compositions of the two broad-distribution ADCs to be highly complex. We also compared results from WCX and imaged capillary isoelectric focusing (icIEF). Results showed that separation in icIEF was less influenced by conjugated linker drugs for the ADCs studied in this work, and better alignment was found between the two techniques for the ADC with controlled conjugate sites. Overall, this work provides insights into the complexity of WCX analysis of ADCs, which should be considered during method development and sample characterization.  相似文献   

7.
The selectivity of electrodes of solar cells is a critical factor that can limit the overall efficiency. If the selectivity of an electrode is not sufficient both electrons and holes recombine at its surface. In materials with poor transport properties such as in organic solar cells, these surface recombination currents are accompanied by large gradients of the quasi‐Fermi energies as the driving force. Experimental results from current–voltage characteristics, advanced photo‐ and electroluminescence as well as charge extraction of three different photoactive materials are shown and compared to drift‐diffusion simulations. It can be concluded that in cases of electrodes with reduced selectivity the decrease of the open‐circuit voltage can be divided into two distinct contributions, the reduction of the overall steady‐state charge carrier density and the gradients of the quasi‐Fermi energies. The results clearly show that for photoactive layers with poor transport properties, the gradient of the quasi‐Fermi energy in the vicinity of the contact is the main contribution to the loss in open‐circuit voltage. For imbalanced mobilities, this gives rise to the phenomenon that it is more challenging to realize a selective contact for the less mobile charge carrier, i.e., the hole contact in most organic solar cells.  相似文献   

8.
Probiotic encapsulation is an entire system that not only involves but also depends on many factors. Elements such as the encapsulation method itself, materials, environmental conditions, and last, but not least, the strain; all play an important role in the encapsulation process. The current paper focuses on the right selection of probiotics, the various stress factors that impact the survival capacity of probiotics during and after encapsulation, and the rational selection of appropriate protection strategies to overcome these factors and achieve the highest possible encapsulation efficiency under optimal conditions. This review discusses the effects of temperature, moisture content, and water activity as well as pH, oxygen, and pressure on the viabilities of microorganisms. The effect of the surface and structure of the capsules on the encapsulated microorganisms and the impact of the materials used for the encapsulation are discussed as well. Last, but not least, the importance of choosing the right bacteria is reviewed.  相似文献   

9.
The transport of microscopic particles such as growth factors, proteins, or drugs through the extracellular matrix (ECM) is based on diffusion, a ubiquitous mechanism in nature. The ECM shapes the local distribution of the transported macromolecules and at the same time constitutes an important barrier toward infectious agents. To fulfill these competing tasks, the hydrogels have to employ highly selective filtering mechanisms. Yet, the underlying microscopic principles are still an enigma in cell biology and drug delivery. Here, we show that the extracellular matrix presents an effective electrostatic bandpass, suppressing the diffusive motion of both positively and negatively charged objects. This mechanism allows uncharged particles to easily diffuse through the matrix, while charged particles are effectively trapped. However, by tuning the strength of this physical interaction of the particles with the biopolymer matrix, the microscopic mobility of formerly trapped particles can be rescued on demand. Moreover, we identify heparan sulfate chains to be one important key factor for the barrier function of the extracellular matrix. We propose that localized charge patches in the ECM are responsible for its highly unspecific but strongly selective filtering effect. Such localized interactions could also account for the observed tunability and selectivity of many other important permeability barriers that are established by biopolymer-based hydrogels, e.g., the mucus layer of endothelial cells or the hydrogel in the nuclear core complex.  相似文献   

10.
Investigations were carried out concerning the considerate and selective separation of intact, product including recombinant E. coli cells from culture broths by adsorption. Adsorbents were synthesized on basis of porous glass “SIRAN” (Schott, Mainz) by chemical surface modification in order to adapt surface charge density and hydrophobicity to the surface behavior of the hosts. It is possible to accumulate up to 58?mg dry biomass per gram carrier by using the fixed bed circulation technique and by simultaneous dosage of small amounts of polycationic reagent Polyethyleneimine (PEI). The method is especially useful for the separation of shear stress sensible microorganisms. Preferred release of the recombinant product staphylokinase (SAK) from the cytoplasmatic space of the adsorbed cells was done by permeabilization of the cells and elution of the column with suitable agents. Thus, product enrichment was achieved simultaneously with the clearence of host cell proteins and other cell components or fragments.  相似文献   

11.
Membrane separations using molecularly imprinted polymers   总被引:7,自引:0,他引:7  
This review presents an overview on the promising field of molecularly imprinted membranes (MIM). The focus is onto the separation of molecules in liquid mixtures via membrane transport selectivity. First, the status of synthetic membranes and membrane separation technology is briefly summarized, emphasizing the need for novel membranes with higher selectivities. Innovative principles for the preparation of membranes with improved or novel functionality include self-assembly or supramolecular aggregation as well as the use of templates. Based on a detailed analysis of the literature, the main established preparation methods for MIM are outlined: simultaneous membrane formation and imprinting, or preparation of imprinted composite membranes. Then, the separation capability of MIM is discussed for two different types, as a function of their barrier structure. Microporous MIM can continuously separate mixtures based on facilitated diffusion of the template, or they can change their permeability in the presence of the template ("gate effect"). Macroporous MIM can be developed towards molecule-specific membrane adsorbers. Emerging further combinations of molecularly imprinted polymers (MIPs), especially MIP nanoparticles or microgels, with membranes and membrane processes are briefly outlined as well. Finally, the application potential for advanced MIM separation technologies is summarized.  相似文献   

12.
Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review.  相似文献   

13.
In this work we describe the new concept of using fungal hydrophobins as efficient tags for purification of recombinant fusion proteins by aqueous two-phase separation. Hydrophobins are a group of small surface-active proteins produced by filamentous fungi. Some characteristics of hydrophobins are that they are relatively small (approximately 100 amino acids), they contain eight disulfide-forming Cys residues in a conserved pattern, and they self-assemble on interfaces. The aqueous two-phase systems studied were based on nonionic surfactants that phase-separate at certain temperatures. We show that the use of hydrophobins as tags has many advantages such as high selectivity and good yield and is technically very simple to perform. Fusion proteins with target proteins of different molecular size were compared to the corresponding free proteins using a set of different surfactants. This gave an understanding on which factors influence the separation and what rationale should be used for optimization. This unusually strong and specific interaction between polymeric surfactants and a soluble protein shows promise for new developments in interfacing proteins and nonbiological materials for other applications as well.  相似文献   

14.
Previous studies have shown that acylated plasma and milk proteins with increased negative charge, derived from various animal and human sources, are potent anti-HIV compounds. The antiviral effects seemed to correlate positively with the number of negative charges introduced into the various polypeptides: proteins with a high content of basic amino acids in which all of the available epsilonNH2 groups were anionized yielded the most potent anti-HIV compounds. It remained unclear however whether the total net negative charge of the various derivatized proteins, or rather the charge density on the protein backbone, is essential for the observed anti-HIV activity. Earlier studies have shown that acylated albumins preferentially block the process of HIV/cell fusion through binding to the HIV envelope proteins gp120 and gp41 as well as to the cell surface of the HIV target cells. Some of these polyanionic proteins have been shown to interfere also with the gp120-CD4 mediated virus/cell binding. The relative contribution of these effects to the anti-HIV activity may depend both on the total negative charge introduced as well as the hydrophobicity of the acylating reagent added to the particular proteins. In this study we show that the higher the charge density of the derivatized proteins, the more potent their HIV replication inhibiting effects are. In contrast, the addition of positive charge to the studied plasma and milk proteins through amination resulted in a reduced anti-HIV activity but a clearly increased anti-HCMV activity, with IC50 values in the low micromolar concentration range. Interestingly, native lactoferrin (Lf) was antivirally active against both HIV and HCMV. Acylation or amination of Lf increased the anti-HIV and anti-HCMV activity, respectively. The N-terminal portion of Lf appeared essential for its anti-HCMV effect: N-terminal deletion variants of human Lf were less active against HCMV. Circular dichroism of the modified proteins showed that the secondary structure of the tested proteins was only moderately influenced by acylation and/or covalent attachment of drugs, making these (derivatized) proteins useful candidates as antiviral agents and/or intrinsically active drug carriers. The relatively simple chemical derivatization as well as the abundant sources of blood plasma and milk proteins provides attractive opportunities for the preparation of potent and relatively cheap antiviral agents for systemic or local applications.  相似文献   

15.
Correlations to describe the effect of surface hydrophobicity and charge of proteins with their partition coefficient in aqueous two-phase systems were investigated. Polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate, and dextran systems in the presence of low (0.6% w/w) and high (8.8% w/w) levels of NaCl were selected for a systematic study of 12 proteins. The surface hydrophobicity of the proteins was measured by ammonium sulfate precipitation as the inverse of their solubility. The hydrophobicity values measured correlated well with the partition coefficients, K, obtained in the PEG/salt systems at high concentration of NaCl (r = 0.92-0.93). In PEG/citrate systems the partition coefficient correlated well with protein hydrophobicity at low and high concentrations of NaCl (r = 0.81 and 0.93, respectively). The PEG/citrate system also had a higher hydrophobic resolution than other systems to exploit differences in the protein's hydrophobicity. The surface charge and charge density of the proteins was determined over a range of pH (3-9) by electrophoretic titration curves; PEG/salt systems did not discriminate well between proteins of different charge or charge density. In the absence of NaCl, K decreased slightly with increased positive charge. At high NaCl concentration, K increased as a function of positive charge. This suggested that the PEG-rich top phase became more negative as the concentration of NaCl in the systems increased and, therefore, attracted the positively charged proteins. The effect of charge was more important in PEG/dextran systems at low concentrations of NaCl. In the PEG/dextran systems at lower concentration of NaCl, molecular weight appeared to be the prime determinant of partition, whereas no clear effect of molecular weight could be found in PEG/salt systems.  相似文献   

16.
17.
气囊是在水生细菌中广泛存在的一种具有刚性中空蛋白结构的特殊细胞器,不仅为水生细菌提供浮力,还对其在不利环境或应激条件下的生存至关重要。近期研究发现在其他非水生细菌如沙雷氏菌和链霉菌中也存在气囊结构,而且表现出不同的生理功能。来源于不同种属细菌的气囊生物合成基因簇具有各自鲜明的特征,其生物合成和调控机制也有所不同。本综述将介绍和总结不同细菌中气囊的基本生理功能和生物合成及调控机制,以及气囊的生物技术应用,并对气囊在链霉菌中的生物合成研究以及人工重组气囊的潜在应用进行展望。  相似文献   

18.
High resolution two-dimensional electrophoresis of proteins.   总被引:2166,自引:0,他引:2166  
  相似文献   

19.
Proteomics has evolved substantially since its early days, some 20 years ago. In this mini-review, we aim to provide an overview of general methodologies and more recent developments in mass spectrometric approaches used for relative and absolute quantitation of proteins. Enhancement of sensitivity of the mass spectrometers as well as improved sample preparation and protein fractionation methods are resulting in a more comprehensive analysis of proteomes. We also document some upcoming trends for quantitative proteomics such as the use of label-free quantification methods. Hopefully, microbiologists will continue to explore proteomics as a tool in their research to understand the adaptation of microorganisms to their ever changing environment. We encourage them to incorporate some of the described new developments in mass spectrometry to facilitate their analyses and improve the general knowledge of the fascinating world of microorganisms.  相似文献   

20.
Association with a surface is an important aspect of survival for microorganisms in natural and manmade environments/Both bacteria and diatoms are involved in such associations. In many cases, this leads to surface fouling, which often results in surface deterioration and mechanical failure in industrial systems. We now know that microorganisms exploit many strategies to establish associations with surfaces. As in the case of other cellular processes, calcium ions seem to play an important role in adhesion of cells to surfaces. Calcium is involved in non-specific interactions such as neutralization of the electrical double layer between cell and substratum surface as well as specific adhesive interactions that cannot be replaced by other cations. The unique properties of calcium ions promote both specific and non-specific interactions with protein and polysaccha-ride adhesin molecules at the cell surface. As important, but less well understood, calcium ions also influence the way microbial cells interact with different substrata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号