首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs.  相似文献   

2.
Properties of motor unit action potentials (MUAPs) were compared for medial gastrocnemius (MG) motor units (MUs) in cats and rats. The experiments on functionally isolated MUs were performed under general anaesthesia, under comparable conditions (surgery, stimulating protocol and recording methods) for both species investigated. The proportions of motor units and contractile properties of the sample used in the study were consistent with previous studies performed on the MG muscle in both animal species, so comparisons of action potentials of individual types of MUs were acknowledged as fully reliable. The most prominent differences concerning MUAPs were observed in total duration and peak-to-peak times which for all MU types were about twice longer in cat MUs, in comparison to the rat MUs. The considerable disproportions were observed between the MUAP amplitudes of FF (fast fatigable), FR (fast resistant to fatigue) and S (slow) MUs in each species (the highest amplitudes were measured for FF and the lowest for S MUs), but there were no significant differences between cat and rat when respective types of MUs were compared. The shapes of MUAPs were commonly characterized by biphasic waveforms composed of two or three turns in all types of units, and no interspecies differences were revealed. Several factors influencing MUAP parameters were discussed indicating most of all importance of variable length of cat and rat muscle fibres and ambiguous influence of motor unit size, thickness of muscle fibres and their density around the recording electrode in the MG muscle of both species.  相似文献   

3.
Recently, high-density surface EMG electrode grids and multi-channel amplifiers became available for non-invasive recording of human motor units (MUs). We present a way to decompose surface EMG signals into MU firing patterns, whereby we concentrate on the importance of two-dimensional spatial differences between the MU action potentials (MUAPs). Our method is exemplified with high-density EMG data from the vastus lateralis muscle of a single subject. Bipolar and Laplacian spatial filtering was applied to the monopolar raw signals. From the single recording in this subject six different simultaneously active MUs could be distinguished using the spatial differences between MUAPs in the direction perpendicular to the muscle fiber direction. After spike-triggered averaging, 125-channel two-dimensional MUAP templates were obtained. Template-matching allowed tracking of all MU firings. The impact of spatial information was measured by using subsets of the MUAP templates, either in parallel or perpendicular to the muscle fiber direction. The use of one-dimensional spatial information perpendicular to the muscle fiber direction was superior to the use of a linear array electrode in the longitudinal direction. However, to detect the firing events of the MUs with a high accuracy, as needed for instance for estimation of firing synchrony, two-dimensional information from the complete grid electrode appears essential.  相似文献   

4.
Motor unit action potentials (MUAPs) of brachial biceps were simulated. A simulated MUAP was obtained as a sum of single fibre action potentials (SFAPs) from all the muscle fibres of a motor unit (MU). The influence of the following factors on MUAP shape for different kinds of recording electrode was studied: fibre density, neuromuscular jitter, temporal dispersion and electrode displacements. The simulation confirms that typical MUAPs recorded with needle electrodes from muscles of low fibre density such as brachial biceps are usually triphasic. Increased fibre density produces MUAPs of more complex shape and higher amplitude. Normal neuromuscular jitter is responsible for the variability of shape of subsequent potentials from the same MU as well as for electromyographic shimmer. Pathologic (increased) jitter makes the shapes of subsequent potentials unrecognizable. The influence of temporal dispersion is interconnected with other factors but rather of minor importance. The simulation shows how big changes in MUAP shape can be expected due to electrode displacements during single experiment or during estimation of MU territory.  相似文献   

5.
This study included spike trigger averaging (STA) procedures to examine the acceptability of the Precision Decomposition (PD) III derived motor unit action potential (MUAP) trains that met the >90% accuracy criteria from the reconstruct-and-test. MUs met the >90% accuracy criteria from the reconstruct-and-test with STA procedures then applied. Y-intercepts and slopes were calculated for the firing rate- and MUAP amplitude-recruitment threshold relationships. Gaussian noise (1% of the SD of the mean interspike interval) was added to the firing times with the changes in MUAPs quantified. A total of 455 MUs were decomposed with 155 MUs removed as a result of the reconstruct-and-test. Five additional MUs were excluded via the STA criteria. The MUAP waveforms deteriorated with the inclusion of Gaussian noise. There were differences in the derived action potentials amplitudes of higher-threshold MUs between the PD III algorithm and the STA procedure. There was excellent agreement among the slopes and y-intercepts between the relationships that included or excluded MUs that did not meet the STA criteria. There was good agreement between the MUAP amplitude-recruitment threshold relationships derived from the PD III and STA procedure. The addition of the STA procedures did not alter the MU-derived relationships.  相似文献   

6.
PURPOSE: The purpose of the study was to demonstrate that anatomical features of individual motor units of the puborectalis muscle can be detected with non-invasive electromyography (EMG) and to evaluate differences in electrophysiological properties of the puborectalis muscles in a small group of healthy and pathologic subjects. METHODS: Multichannel EMG was recorded by means of a flexible probe applied on the gloved index finger and carrying an array of eight equally spaced (1.15 mm) electrodes. A multichannel EMG amplifier provided seven outputs corresponding to the pairs of adjacent electrodes. Tests were performed in three different positions (dorsal, left and right) over the puborectalis muscle on 20 subjects (nine healthy, seven constipated and four incontinent patients). Motor unit action potentials (MUAPs) generated at the innervation zone of a MU and propagating along the muscle fibers generated repetitive characteristic patterns on the seven output channels allowing identification of anatomical features of the motor units. RESULTS: MUAPs were observed travelling in either one or both directions with the array in dorsal position, and mainly in ventral-to-dorsal direction in either lateral position. MUAP amplitude was lower in constipated and incontinent patients with respect to healthy subjects. The conduction velocity estimated on the identified MUAPs was lower for constipated patients with respect to healthy subjects suggesting different mechanical properties of the active motor units. CONCLUSIONS: This technique allows the extraction of relevant information about the anatomical features (innervation zone position and overlapping of motor unit branches) of the puborectalis muscle and its electrophysiological properties and maybe can be applied as an novel methodology for assessing the anorectal function in patients.  相似文献   

7.
High density-surface EMG (HD-sEMG) is a non-invasive technique to measure electrical muscle activity with multiple (more than two) closely spaced electrodes overlying a restricted area of the skin. Besides temporal activity HD-sEMG also allows spatial EMG activity to be recorded, thus expanding the possibilities to detect new muscle characteristics. Especially muscle fiber conduction velocity (MFCV) measurements and the evaluation of single motor unit (MU) characteristics come into view. This systematic review of the literature evaluates the clinical applications of HD-sEMG. Although beyond the scope of the present review, the search yielded a large number of “non-clinical” papers demonstrating that a considarable amount of work has been done and that significant technical progress has been made concerning the feasibility and optimization of HD-sEMG techniques. Twenty-nine clinical studies and four reviews of clinical applications of HD-sEMG were considered. The clinical studies concerned muscle fatigue, motor neuron diseases (MND), neuropathies, myopathies (mainly in patients with channelopathies), spontaneous muscle activity and MU firing rates. In principle, HD-sEMG allows pathological changes at the MU level to be detected, especially changes in neurogenic disorders and channelopathies. We additionally discuss several bioengineering aspects and future clinical applications of the technique and provide recommendations for further development and implementation of HD-sEMG as a clinical diagnostic tool.  相似文献   

8.
The aim of this work was to demonstrate the rank order of motor unit (MU) recruitment by surface EMG based on a Laplacian detection technique and to document the MU features at their recruitment threshold. Surface EMG signals were recorded on the biceps brachii of 10 healthy subjects during linear force ramps. When achievable, the signals were decomposed into MU action potential (MUAP) trains. MU inter-pulse interval (IPI), conduction velocity (MUCV) and amplitude were estimated on the first 12 MUAPs of each detectable train in order to characterize the MU features at their firing onset. A strong correlation was found between MU recruitment threshold and IPI, MUCV, and amplitude, showing that the size principle can be demonstrated by a fully non-invasive EMG technique. However, signal decomposition was not possible on seven subjects due to the effects of the volume conductor when the skinfold thickness was too large. When requirements for an optimal detection of MUAP trains are met, surface EMG may be used to improve our understanding of MU activity.  相似文献   

9.
Single motor unit and fiber action potentials during fatigue   总被引:3,自引:0,他引:3  
Muscle fatigue is defined as a loss of tension development during constant stimulation. Although the relationship is not well documented, muscle fatigue has been inferred from electromyogram (EMG) signals. The purpose of this study was to determine the relationship between the amplitude and duration of single motor unit action potentials (MUAPs) and the loss of tension development (fatigue) in the medial gastrocnemius muscles of cats. Single motor units were fatigued by continuous stimulation at 10 or 80 Hz or with trains of 40-Hz stimuli. When motor units were stimulated at 10 Hz and with trains at 40 Hz (low frequency), tension declined and remained depressed during recovery. The changes in the MUAP correlated poorly with changes in tension. During and after stimulation at 80 Hz (high frequency), changes in the amplitude and duration of MUAPs correlated highly with changes in tension development. Since the EMG signal is dependent on a summation and cancellation of individual MUAPs, the EMG provides a reasonable estimate of high-frequency fatigue but an unreliable measure of low-frequency fatigue.  相似文献   

10.
Space permanence simulations such as prolonged bed-rest can mimic some of the physiological modifications in the human body and provide study conditions that are more accessible than during space flight. A short term bed-rest experiment was organized to simulate the effects of weightlessness for studying the adaptation to this condition. Eight healthy young volunteers were studied before and immediately after the 14 day periods of strict bed-rest.Surface EMG signals were detected with linear electrode arrays from vastus medialis, vastus lateralis and tibialis anterior muscle during isometric voluntary contractions at 20% MVC. Motor unit action potentials (MUAPs) of individual motor units were extracted from the interference EMG signals with a partial decomposition algorithm and averaged.MUAP templates generated by the same motor unit could be retrieved before and after bed-rest period. Muscle fiber conduction velocity (CV) was estimated from each averaged MUAP template and from the global EMG signal. Both global and single MU conduction velocity was observed to decrease by about 10% after the bed-rest period (p < 0.05). Amplitude and power spectral parameters did not significantly change after the bed-rest period.It is concluded that a short term bed-rest reduces the CV of individual motor units without a significant effect on muscle force or on other electrophysiological parameters.  相似文献   

11.
Experimental investigation of practicing a dynamic, goal-directed movement reveals significant changes in kinematics. Modeling can provide insight into the alterations in muscle activity, associated with the kinematic adaptations, and reveal the potential motor unit (MU) firing patterns that underlie those changes. In this paper, a previously developed muscle model and software (Raikova and Aladjov, Journal of Biomechanics, 35, 2002) have been used to investigate changes in MU control, while practicing fast elbow flexion to a target in the horizontal plane. The first trial (before practice) and the last trial (after extensive practice) of two subjects have been simulated. The inputs for the simulation were the calculated external moments at the elbow joint. The external moments were countered by the action of three flexor muscles and two extensor ones. The muscles have been modeled as a mixture of MUs of different types. The software has chosen the MU firing times necessary to accomplish the movement. The muscle forces and MUs firing statistics were then calculated. Three hypotheses were tested and confirmed: (1) peak muscle forces and antagonist co-contraction increase during training; (2) there is an increase in the firing frequency and the synchronization between MUs; and (3) the recruitment of fast-twitch MUs dominates the action.  相似文献   

12.
Seven healthy subjects were investigated in cyclic ramp-and-hold long lasting isometric contractions. Wire branched electrodes were used for selective recording of single motor unit (MU) potentials from m. biceps brachii. MU behaviour was defined in terms of recruitment/derecruitment thresholds (RT and DT) and the duration of interspike intervals (ISI). A total of 63 MUs was investigated: 40 units were active from the beginning of the task performance and another 23 were recruited later. There were no changes in the recruitment pattern of MUs with fatigue development - a short first ISI followed by a very long second one and an almost constant firing rate after this transient phase. The tendency of RT to gradually decrease dominates the results. Thus, the required constant rate of force increase with fatigue development was maintained mostly by the mechanisms of space coding (i.e., decrease of RT and recruitment of additional MUs). Oppositely, the time behaviour of the DT changes was not uniform and rate coding was an essential mechanism in the adaptation of MU activity to muscle fatigue during relaxation phases. The recruitment pattern and fatigue related behaviour of the additionally recruited MUs were similar to those of MUs active from the first cycle of the motor task performance.  相似文献   

13.
It is generally accepted that ischemia produced by limb compression affects rapidly conducting large-diameter Ia afferents in the early stage and that the motor nerve-muscle complex is blocked later. This notion, however, seems to be controversial for several reasons, so an attempt to reveal the amount of motor unit (MU) impairment during ischemia was made. Observation of human soleus muscle electromyographic (EMG) signal recorded either by bipolar needle electrode or by surface electrodes at various levels of voluntary contraction during the course of ischemia showed that low-threshold small MUs were affected first while high-threshold large MUs survived longer. The changes in EMG patterns were temporally correlated with T-reflex deterioration. It is suggested that the early loss of low-threshold MUs may play a definite role in alterations of reflexes during ischemia.  相似文献   

14.
The study of motor unit action potential (MUAP) activity from electromyographic signals is important for neurological investigations aiming to understand the state of the neuromuscular system. In this context, the identification and clustering of MUAPs that exhibit common characteristics, and the assessment of which data features are most relevant for the definition of such cluster structure, are central issues. In this paper, we propose the application of an unsupervised feature relevance determination (FRD) method to the analysis of experimental MUAPs. This method is embedded in a constrained mixture of distributions model that simultaneously performs data clustering and visualization. The experimental results of the analysis of a data set consisting of MUAPs measured from the First Dorsal Interosseous, a hand muscle, indicate that the features corresponding to the hyperpolarization period in the physiological process of generating muscle fibre action potentials are consistently estimated to be the most relevant. Moreover, the MUAP cluster structure of the data is shown to be only partially attributable to inter-subject differences, with the hyperpolarization period providing the best discrimination of the data by subject.  相似文献   

15.
Capabilities of amplitude and spectral methods for information extraction from interference EMG signals were assessed through simulation and preliminary experiment. Muscle was composed of 4 types of motor units (MUs). Different hypotheses on changes in firing frequency of individual MUs, intracellular action potential (IAP) and muscle fibre propagation velocity (MFPV) during fatigue were analyzed. It was found that changes in amplitude characteristics of interference signals (root mean square, RMS, or integrated rectified value, IEMG) detected by intramuscular and surface electrodes differed. RMS and IEMG of surface detected interference signals could increase even under MU firing rate reduction and without MU synchronisation. IAP profile lengthening can affect amplitude characteristics more significantly than MU firing frequency. Thus, an increase of interference EMG amplitude is unreliable to reflect changes in the neural drive. The ratio between EMG amplitude and contraction response can hardly characterise the so-called 'neuromuscular efficiency'. The recently proposed spectral fatigue indices can be used for quantification of interference EMG signals. The indices are practically insensitive to MU firing frequency. IAP profile lengthening and decrease in MFPV enhanced the index value, while recruitment of fast fatigable MUs reduced it. Sensitivity of the indices was higher than that of indices traditionally used.  相似文献   

16.
Experimental investigation of practicing a dynamic, goal-directed movement reveals significant changes in kinematics. Modeling can provide insight into the alterations in muscle activity, associated with the kinematic adaptations, and reveal the potential motor unit (MU) firing patterns that underlie those changes. In this paper, a previously developed muscle model and software (Raikova and Aladjov, Journal of Biomechanics, 35, 2002) have been used to investigate changes in MU control, while practicing fast elbow flexion to a target in the horizontal plane. The first trial (before practice) and the last trial (after extensive practice) of two subjects have been simulated. The inputs for the simulation were the calculated external moments at the elbow joint. The external moments were countered by the action of three flexor muscles and two extensor ones. The muscles have been modeled as a mixture of MUs of different types. The software has chosen the MU firing times necessary to accomplish the movement. The muscle forces and MUs firing statistics were then calculated. Three hypotheses were tested and confirmed: (1) peak muscle forces and antagonist co-contraction increase during training; (2) there is an increase in the firing frequency and the synchronization between MUs; and (3) the recruitment of fast-twitch MUs dominates the action.  相似文献   

17.
This work investigated motor unit (MU) recruitment during transcutaneous electrical stimulation (TES) of the tibialis anterior (TA) muscle, using experimental and simulated data. Surface electromyogram (EMG) and torque were measured during electrically-elicited contractions at different current intensities, on eight healthy subjects.EMG detected during stimulation (M-wave) was simulated selecting the elicited MUs on the basis of: (a) the simulated current density distribution in the territory of each MU and (b) the excitation threshold characteristic of the MU. Exerted force was simulated by adding the contribution of each of the elicited MUs. The effects of different fat layer thickness (between 2 and 8 mm), different distributions of excitation thresholds (random excitation threshold, higher threshold for larger MUs or smaller MUs), and different MU distributions within the muscle (random distribution, larger MU deeper in the muscle, smaller MU deeper) on EMG variables and torque were tested.Increase of the current intensity led to a first rapid increase of experimental M-wave amplitude, followed by a plateau. Further increases of the stimulation current determined an increase of the exerted force, without relevant changes of the M-wave. Similar results were obtained in simulations.Rate of change of conduction velocity (CV) and leading coefficient of the second order polynomial interpolating the force vs. stimulation level curve were estimated as a function of increasing current amplitudes. Experimental data showed an increase of estimated CV with increasing levels of the stimulation current (for all subjects) and a positive leading coefficient of force vs. stimulation current curve (for five of eight subjects). Simulations matched the experimental results only when larger MUs were preferably located deeper in the TA muscle (in line with a histochemical study). Marginal effect of MU excitation thresholds was observed, suggesting that MUs closer to the stimulation electrode are recruited first during TES regardless of their excitability.  相似文献   

18.
The most detailed information about the structural and functional characteristics of the muscle can be gained from the single motor unit (MU) action potential. In addition, information about the activity of a single MU is essential for the diagnosis of neuromuscular disorders. Due to the low spatial resolution of conventional bipolar surface electromyography (EMG), the resulting signal is a superposition of a large number of simultaneous active MUs. The difficulty is in separating the activity of a single MU from simultaneous active adjacent MUs. In contrast to other non-invasive EMG procedures, the high-spatial-resolution-EMG (HSR-EMG), which is based on the use of a multi-electrode array in combination with a spatial filter procedure, allows the detection of single MU activity in a non-invasive way. It opens access to the excitation spread and enables the determination of the conduction velocity in single MUs, and the localization of the endplate region. In addition, HSR-EMG detects changes in the electrical activities of the MUs which are typical in neuromuscular disorders. Using HSR-EMG it was possible to identify 97% of all investigated volunteers and patients with muscular or neuronal disorders. Therefore, HSR-EMG is suitable as a tool for the non-invasive diagnosis of neuromuscular disorders.  相似文献   

19.
Intramuscular and surface electromyogram changes during muscle fatigue   总被引:9,自引:0,他引:9  
Twelve male subjects were tested to determine the effects of motor unit (MU) recruitment and firing frequency on the surface electromyogram (EMG) frequency power spectra during sustained maximal voluntary contraction (MVC) and 50% MVC of the biceps brachii muscle. Both the intramuscular MU spikes and surface EMG were recorded simultaneously and analyzed by means of a computer-aided intramuscular spike amplitude-frequency histogram and frequency power spectral analysis, respectively. Results indicated that both mean power frequency (MPF) and amplitude (rmsEMG) of the surface EMG fell significantly (P less than 0.001) together with a progressive reduction in MU spike amplitude and firing frequency during sustained MVC. During 50% MVC there was a significant decline in MPF (P less than 0.001), but this decline was accompanied by a significant increase in rmsEMG (P less than 0.001) and a progressive MU recruitment as evidenced by an increased number of MUs with relatively large spike amplitude. Our data suggest that the surface EMG amplitude could better represent the underlying MU activity during muscle fatigue and the frequency powers spectral shift may or may not reflect changes in MU recruitment and rate-coding patterns.  相似文献   

20.
The effects of hypothermia and hyperthermia on mammalian skeletal muscle function have previously been reported. However, their effects on the contractile properties of different motor unit (MU) types were not described. This study aimed to explore the effect of temperature on contractile properties of MUs in rat medial gastrocnemius kept at 25 °C (hypothermia), 37 °C (normothermia), and 41 °C (hyperthermia). Hypothermia prolonged the twitch time parameters of all MU types, shifting the steep part of the force-frequency curve towards lower frequencies and increasing its steepness. In addition, it reduced the rate of force development but not the twitch and tetanus forces of slow-twitch (S) MUs. Moreover, it reduced the tetanic force of fast-twitch fatigable (FF) MUs and increased the twitch force of fast-twitch fatigue-resistant (FR) MUs. In contrast, hyperthermia had opposite effects on twitch time properties and the force-frequency relationship. The twitch-to-tetanus ratio decreased for FF and FR MUs, and the steep part of the force-frequency curve shifted towards higher frequencies and decreased in steepness. Our findings indicate that FF MUs are the most sensitive and S MUs are the least sensitive to temperature. Furthermore, force control processes involving changes in motoneuronal firing frequency were radically modified for fast MUs, especially FF MUs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号