首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a multi-channel apparatus for automated monitoring of bioluminescence in real time. We designed this apparatus to be compact (230 mm wide, 600 mm deep, and 227.5 mm high) so that it can be operated in a relatively small commercially-available incubator. The apparatus can process 20 samples at maximum in a single run, providing enough processibility in small-scale experiments. We verified the reliability and sensitivity of the apparatus by observing circadian bioluminescence rhythms over one week from a bioluminescent reporter strain (E9) of the cyanobacterium Synechococcus sp. strain PCC 7942 [Ishiura, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson, C.H., Kondo, T., Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria, Science, 281 (1998) 1519-1523]. Our apparatus allows flexible experimental designs and will be effectively used for the studies of gene expression in various purposes.  相似文献   

2.
Proteins derived from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, which performs plant-type oxygenic photosynthesis, are suitable for biochemical, biophysical, and X-ray crystallographic studies. We developed an automated bioluminescence real-time monitoring system for the circadian clock in the thermophilic cyanobacterium T. elongatus BP-1 that uses a bacterial luciferase gene set (Xl luxAB) derived from Xenorhabdus luminescens as a bioluminescence reporter gene. A promoter region of the psbA1 gene of T. elongatus was fused to the Xl luxAB gene set and inserted into a specific targeting site in the genome of T. elongatus. The bioluminescence from the cells of the psbA1-reporting strain was measured by an automated monitoring apparatus with photomultiplier tubes. The strain exhibited the circadian rhythms of bioluminescence with a 25-h period length for at least 10 days in constant light and temperature. The rhythms were reset by light-dark cycle, and their period length was almost constant over a wide range of temperatures (30 to 60 degrees C). Theses results indicate that T. elongatus has the circadian clock that is widely temperature compensated.  相似文献   

3.
Real-time monitoring of gene expression by a bioluminescence reporter gene is a powerful method for large-scale, detailed analysis of gene expression in living cells and large-scale screening of mutants. We have developed a portable, compact, integrated automatic bioluminescence-monitoring apparatus that can continuously monitor 960 individual plant seedlings or micro-organism colonies under uniform light conditions at temperatures up to 50 °C. The apparatus gave reproducible and reliable results for both bioluminescence photon counts and period length of bioluminescence rhythms of Arabidopsis reporter strain. Using the apparatus, we measured bioluminescence rhythms in the thermophilic cyanobacterium Thermosynechococcus at temperature up to 43 °C. We also monitored the expression of the flowering regulator gene CONSTANS in Arabidopsis as bioluminescence in high time resolution under different photoperiodic conditions. The high-throughput bioluminescence-monitoring apparatus developed here is a powerful tool for real-time monitoring of gene expression and gene function.  相似文献   

4.
S Aoki  T Kondo  H Wada    M Ishiura 《Journal of bacteriology》1997,179(18):5751-5755
The cyanobacterium Synechocystis sp. strain PCC 6803 exhibited circadian rhythms in complete darkness. To monitor a circadian rhythm of the Synechocystis cells in darkness, we introduced a PdnaK1::luxAB gene fusion (S. Aoki, T. Kondo, and M. Ishiura, J. Bacteriol. 177:5606-5611, 1995), which was composed of a promoter region of the Synechocystis dnaK1 gene and a promoterless bacterial luciferase luxAB gene set, as a reporter into the chromosome of a dark-adapted Synechocystis strain. The resulting dnaK1-reporting strain showed bioluminescence rhythms with a period of 25 h (on agar medium supplemented with 5 mM glucose) for at least 7 days in darkness. The rhythms were reset by 12-h-light-12-h-dark cycles, and the period of the rhythms was temperature compensated for between 24 and 31 degrees C. These results indicate that light is not necessary for the oscillation of the circadian clock in Synechocystis.  相似文献   

5.
I isolated bacteria from blue cheese in order to find bacterial strains secreting l-methioninase enzyme, and optimized the conditions for the most efficient enzyme secretion. The efficient isolate, identified according to the 16S rRNA gene sequence analysis, was Hafnia alvei belonging to Enterobacteriaceae. I confirmed that the H. alvei strain harbored the methionase gene, mdeA (1194 bp). The environmental (pH, temperature) and nutritional (carbon and nitrogen sources and Mg concentration) factors influencing the l-methioninase production of H. alvei were optimized. The highest yield of l-methioninase enzyme was reached after 48 h of incubation when the acidity of the growing medium was adjusted to pH 7.5 and the temperature was 35 °C. The following concentrations of the supplements increased the l-methioninase yield in the medium: galactose (2.0 g L−1), MgSO4 (0.25 g L−1), l-methionine as an inducer (2.0 g L−1), and l-asparagine as an additional N source (1.5 g L−1). I introduce a bacterial strain of H. alvei that is previously unreported to secrete l-methioninase enzyme and show that a carbon source is a mandatory supplement whereas l-methionine is not a mandatory supplement for l-methioninase enzyme production of H. alvei.  相似文献   

6.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

7.
《Journal of Asia》2023,26(1):102036
An investigation was carried out to isolate, identify and molecularly characterize the cellulose-degrading bacterial isolates from the guts of four white grub species (Anomala bengalensis, Brahmina coriacea, Holotrichia longipennis and Holotrichia setticollis) native to Uttarakhand, Himalayas through 16S rRNA sequencing. A total of 178 bacterial strains were isolated from different gut compartments of selected white grub species, of which 95 bacterial isolates showed cellulose metabolizing activities in the CMC assay. Maximum degraders i.e., 38 were isolated from A. bengalensis, of which 18 were isolated from the fermentation chamber. The value of cellulolytic index ranged between 0.05 and 16 showing a variable cellulolytic activity by degraders. A total of 25 potent strains of cellulose-degrading bacteria recording cellulolytic activity > 1 were isolated and sequenced for 16S rRNA gene. Bacillus stratosphericus strain CBG4MG1 (10.78 ± 4.18), Bacillus cereus strain CBG2FC1 (10.33 ± 3.53), Bacillus sp. strain CBG3MG2 (7.28 ± 0.16) and Paenibacillus ginsengagri strain CBG1FC2 (5.66 ± 2.67) were the most potent cellulose-degrading bacteria isolated from the gut of B. coriacea, H. longipennis, H. setticollis and A. bengalensis, respectively. Thus, the cellulolytic bacteria isolated from the gut of selected white grub species may be good sources for profiling novel isolates for industrial use besides identifying eco-friendly solutions for agro-waste management.  相似文献   

8.
Circadian rhythm is a self-sustaining oscillation whose period length coincides with the 24-hour day-night cycle. A powerful tool for circadian clock research is the real-time automated bioluminescence monitoring system in which a promoter region of a clock-controlled gene is fused to a luciferase reporter gene and rhythmic regulation of the promoter activity is monitored as bioluminescence. In the present study, we greatly improved the bioluminescence reporter system in the cyanobacterium Synechocystis sp. strain PCC 6803. We fused an 805-bp promoter region of the dnaK gene seamlessly to the luxA coding sequence and integrated the P(dnaK)::luxAB fusion gene into a specific intergenic region of the Synechocystis genome (targeting site 1). The resulting new reporter strain, PdnaK::luxAB(-), showed 12 times the bioluminescence intensity of the standard reporter strain, CFC2. Furthermore, we generated strain PdnaK::luxAB(+), in which the P(dnaK)::luxAB fusion gene and the selection-marker spectinomycin resistance gene are transcribed in opposite directions. The PdnaK::luxAB(+) strain showed 19 times the bioluminescence intensity of strain CFC2. The procedures used to increase the bioluminescence intensity are especially useful for bioluminescence monitoring of genes with low promoter activity. In addition, these reporter constructs facilitate bioluminescence monitoring of any gene because the promoter fragments they contain can easily be replaced by digestion with unique restriction enzymes. They would therefore contribute to a genome-wide analysis of gene expression in Synechocystis.  相似文献   

9.
The filamentous, heterocystous cyanobacterium Anabaena sp. strain PCC 7120 is one of the simplest multicellular organisms that show both morphological pattern formation with cell differentiation (heterocyst formation) and circadian rhythms. Therefore, it potentially provides an excellent model in which to analyze the relationship between circadian functions and multicellularity. However, detailed cyanobacterial circadian regulation has been intensively analyzed only in the unicellular species Synechococcus elongatus. In contrast to the highest-amplitude cycle in Synechococcus, we found that none of the kai genes in Anabaena showed high-amplitude expression rhythms. Nevertheless, ∼80 clock-controlled genes were identified. We constructed luciferase reporter strains to monitor the expression of some high-amplitude genes. The bioluminescence rhythms satisfied the three criteria for circadian oscillations and were nullified by genetic disruption of the kai gene cluster. In heterocysts, in which photosystem II is turned off, the metabolic and redox states are different from those in vegetative cells, although these conditions are thought to be important for circadian entrainment and timekeeping processes. Here, we demonstrate that circadian regulation is active in heterocysts, as shown by the finding that heterocyst-specific genes, such as all1427 and hesAB, are expressed in a robust circadian fashion exclusively without combined nitrogen.  相似文献   

10.
《Biologicals》2014,42(6):305-311
Due to the emergence of severe infectious diseases and thriving antibiotic resistance, there is a need to explore microbial-derived bioactive secondary metabolites from unexplored regions. Present study deals with a mangrove estuary derived strain of Streptomyces sp. with potent antimicrobial activity against various pathogens, including methicillin resistant Staphylococcus aureus. Bioactive compound was effective even at low MIC level, damages the membrane of methicillin resistant S. aureus and causes cell death, however it has no cytotoxic effect on H9C2 cells. 16S rRNA shared 99.5% sequence similarity to Streptomyces longispororuber. Optimum biomass and antimicrobial compound production were observed in production medium supplemented with 1.0% maltose and 0.5% yeast extract. The active compound purified from the chloroform extract of the cell-free supernatant was studied by FT-IR, 1H NMR, 13C NMR and LC ESI-MS and identified as aromatic polyketide. β-ketosynthase (KS) domain of the Streptomyces strain revealed 93.2% sequence similarity to the benzoisochromanequinone, an actinorhodin biosynthetic gene cluster of Streptomyces coelicolor A3(2). However, the region synthesizing the secondary metabolite produced by the S. longispororuber was not related to the KS domain of the strain, due to the phenomenon of horizontal gene transfer over the period of evolutionary process, thus generating metabolic compound diversity.  相似文献   

11.
Strain LMG 31809 T was isolated from a top soil sample of a temperate, mixed deciduous forest in Belgium. Comparison of its 16S rRNA gene sequence with that of type strains of bacteria with validly published names positioned it in the class Alphaproteobacteria and highlighted a major evolutionary divergence from its near neighbor species which represented species of the orders Emcibacterales and Sphingomonadales. 16S rRNA amplicon sequencing of the same soil sample revealed a highly diverse community in which Acidobacteria and Alphaproteobacteria predominated, but failed to yield amplicon sequence variants highly similar to that of strain LMG 31809 T. There were no metagenome assembled genomes that corresponded to the same species and a comprehensive analysis of public 16S rRNA amplicon sequencing data sets demonstrated that strain LMG 31809 T represents a rare biosphere bacterium that occurs at very low abundances in multiple soil and water-related ecosystems. The genome analysis suggested that this strain is a strictly aerobic heterotroph that is asaccharolytic and uses organic acids and possibly aromatic compounds as growth substrates. We propose to classify LMG 31809 T as a novel species within a novel genus, Govania unica gen. nov., sp. nov, within the novel family Govaniaceae of the class Alphaproteobacteria. Its type strain is LMG 31809 T (=CECT 30155 T). The whole-genome sequence of strain LMG 31809 T has a size of 3.21 Mbp. The G + C content is 58.99 mol%. The 16S rRNA gene and whole-genome sequences of strain LMG 31809 T are publicly available under accession numbers OQ161091 and JANWOI000000000, respectively.  相似文献   

12.
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.  相似文献   

13.
14.
S Aoki  T Kondo    M Ishiura 《Journal of bacteriology》1995,177(19):5606-5611
The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803.  相似文献   

15.
Reproducible circadian rhythms of bioluminescence from individual colonies of cyanobacteria (Synechococcus sp. strain PCC 7942) has been observed. Phenotypic monitoring of colonies on agar plates will enable us to genetically analyze the molecular mechanism of the circadian clock of cyanobacteria by screening for clock mutants. By the introduction of a bacterial luciferase gene, we previously developed a transformed cyanobacterial strain (AMC149) that expresses luciferase as a bioluminescent reporter of the circadian clock. In liquid culture, AMC149 expresses a rhythm of bioluminescence that displays the same behavior as circadian rhythms in higher eukaryotes. Improvements in the technique for administering the reporter enzyme's substrate (decanal) and a highly sensitive photon-counting camera allow monitoring the bioluminescence of single colonies. Individual colonies on agar plates displayed a rhythmicity which is essentially the same as that previously reported for liquid cultures.  相似文献   

16.
A total of 26 Gram-negative, motile, gently curved, and rod-shaped isolates were recovered, during a study to determine the faeco-prevalence of Helicobacter spp. in urban wild birds. Pairwise comparisons of the 16S rRNA gene sequences indicated that these isolates belonged to the genus Helicobacter and phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolates were separated into two divergent groups. The first group consisted of 20 urease-positive isolates sharing the highest 16S rRNA gene sequence identity levels of 98.5–98.6% to H. mustelae ATCC 43772T, while the second group contained six urease-negative isolates with the sequence identity level of 98.5% to the type strain of H. pametensis ATCC 51478T. Five isolates were chosen and subjected to comparative whole-genome analysis. The phylogenetic analysis of the 16S rRNA, gyrA and atpA gene sequences showed that Helicobacter isolates formed two separate phylogenetic clades, differentiating the isolates from the other Helicobacter species. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses between strains faydin-H8T, faydin-H23T and their close neighbors H. anseris MIT 04-9362T and H. pametensis ATCC 51478T, respectively, confirmed that both strains represent novel species in the genus Helicobacter. The DNA G+C contents of the strains faydin-H8T and faydin-H23T are 32.0% and 37.6%, respectively. The results obtained for the characterization of the wild bird isolates indicate that they represent two novel species, for which the names Helicobacter anatolicus sp. nov., and Helicobacter kayseriensis sp. nov., are proposed, with faydin-H8T(=LMG 32237T = DSM 112312T) and faydin-H23T(=LMG 32236T = CECT 30508T) as respective type strains.  相似文献   

17.
《Gene》1997,203(1):65-73
A novel toxin (Beta2) and its gene were characterized from a Clostridium perfringens strain isolated from a piglet with necrotic enteritis. At the amino-acid level, Beta2 toxin (27 670 Da) has no significant homology with the previously identified Beta toxin (called Beta1) (34 861 kDa) from C. perfringens type B NCTC8533 ( Hunter, S.E.C., Brown, J.E., Oyston, P.C.F., Sakurai, J., Titball, R.W., 1993. Molecular genetic analysis of beta-toxin of Clostridium perfringens reveals sequence homology with alpha-toxin, gamma-toxin, and leukocidin of Staphylococcus aureus. Infect. Immun. 61, 3958–3965). Both Beta1 and Beta2 toxins were lethal for mice and cytotoxic for the cell line I407, inducing cell rounding and lysis without affecting the actin cytoskeleton. The genes encoding Beta1 and Beta2 toxins have been localized in unlinked loci in large plasmids of C. perfringens. In addition, Beta2 toxin-producing C. perfringens strains were found to be associated with animal diseases such as necrotic enteritis in piglets and enterocolitis in horses.  相似文献   

18.
We constructed a promoter-trap vector pPT6803-1 to isolate circadian clock-controlled promoters in the cyanobacterium Synechocystis sp. strain PCC 6803. The vector contains a promoterless luciferase gene set (luxAB) from Vibrio harveyi that is targeted to a specific site of the Synechocystis genome as a reporter for gene expression. A library was constructed in pPT6803-1 by introducing the genomic DNA fragments upstream of luxAB to transform Synechocystis cells. Of approximately 10,000 Synechocystis transformants, at least 55 (#1-55) showed circadian rhythms of bioluminescence under continuous illumination. Clones #19, #22, and #26 exhibited obviously different waveforms of bioluminescence from each other. Deletion analysis and primer extension experiments mapped the promoters for the clpP, slr1634, and rbpP genes that are responsible for bioluminescence from #19, #22, and #26, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号