首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Racemic 2-aryl-2-methoxypropionic acids were enantioresolved by the use of (S)-(-)-phenylalaninol 4. For instance, racemic 2-methoxy-2-phenylpropionic acid (+/-)-7 was condensed with phenylalaninol (S)-(-)-4 yielding a diastereomeric mixture of amides, which was easily separated by HPLC on silica gel affording the first-eluted amide (-)-13a and the second-eluted amide (+)-13b: alpha = 3.19, Rs = 3.49. The absolute configuration of amide (-)-13a was determined to be (R;S) by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-13a was converted to oxazoline (R;S)-(-)-14a, from which enantiopure 2-methoxy-2-phenylpropionic acid (R)-(-)-7 was recovered. Other 2-aryl-2-methoxypropionic acids, (R)-(-)-8, (R)-(-)-9, (R)-(+)-10, (R)-(-)-11, and (R)-(-)-12, were similarly prepared in enantiopure forms with the use of phenylalaninol (S)-(-)-4, and their absolute configurations were clearly determined by X-ray crystallography or by chemical correlation.  相似文献   

2.
Arjun Singh  T. R. Manney 《Genetics》1974,77(4):661-670
A suppressor SUP101 of alleles trp5-67 and trp5-18 of the trp5 locus of Saccharomyces cerevisiae is described. The two suppressible mutations have been previously classified as missense. The suppression does not result from a physiological bypass of the tryptophan synthetase-catalyzed reaction, since the suppression is allele-specific. IU alleles trp5-70, tryp5-95, and trp5-102; IA alleles trp5-81, trp5-101, and trp5-103; and the ochre alleles trp5-33 and trp5-48 are not suppressed by SUP101. SUP101 does not suppress ochre alleles ade2-1, his5-2, arg4-17, lys1-1, amber alleles trp1-1, tyr7-1, or unclassified alleles at a number of other loci. These results indicate SUP101 is a missense suppressor. Growth on tryptophanless media is dependent upon gene dosage of both the suppressor and the suppressible alleles. Only the diploids homozygous both for the suppressor and suppressible alleles produce growth equivalent to growth of the haploids bearing a suppressible allele and the suppressor. Suppressor-bearing strains grow poorly even on tryptophan-supplemented media. In more than 100 asci analyzed partial growth inhibition on the complete medium always segregated with the suppressor.  相似文献   

3.
Liu A  Sun Q  Cui J  Zheng J  Liu W  Wan X 《Chirality》2011,23(Z1):E74-E83
Two pairs of calamitic liquid crystalline molecules, (+)-2-[4'-(S)-sec-butoxyphenyl]-5-(4'-hexoxyphenyl)toluene ((+)-S-1) and (+)-2-(4'-hexoxyphenyl)-5-[4'-(S)-sec-butoxyphenyl]toluene ((+)-S-2), (-)-2-[4'-(R)-sec-butoxyphenyl]-5-(4'-hexoxyphenyl)toluene ((-)-R-1) and (-)-2-(4'-hexoxyphenyl)-5-[4'-(R)-sec-butoxyphenyl]toluene ((-)-R-2), have been designed and synthesized. Each of the molecules consists of a p-terphenyl core substituted with a methyl group on the middle ring, a chiral sec-butoxy tail, and an achiral n-hexoxy tail. The geometrical difference between (+)-S-1 ((-)-R-1) and (+)-S-2 ((-)-R-2) lies only in the location of the methyl group on the effective mesogenic core. Yet, such a small change in the structure gives rise to remarkable differences in mesogenic properties and handedness. Both (+)-S-1 and (-)-R-1 have an enantiotropic cholesteric phase (N*) and a monotropic twist grain boundary C* phase (TGBC*), whereas (+)-S-2 and (-)-R-2 exhibit only a monotropic N* phase. Moreover, (+)-S-1 ((-)-R-1) and (+)-S-2 ((-)-R-2) have opposite handedness in the N* phase, and (+)-S-1 and (-)-R-1 even have a helical inversion from N* to TGBC* phase through a non-helical chiral mesophase.  相似文献   

4.
B Wang  H Yang  Y C Liu  T Jelinek  L Zhang  E Ruoslahti  H Fu 《Biochemistry》1999,38(38):12499-12504
The 14-3-3 proteins interact with diverse cellular molecules involved in various signal transduction pathways controlling cell proliferation, transformation, and apoptosis. To aid our investigation of the biological function of 14-3-3 proteins, we have set out to identify high-affinity antagonists. By screening phage display libraries, we have identified a set of peptides which bind 14-3-3 proteins. One of these peptides, termed R18, exhibited a high affinity for different isoforms of 14-3-3 with estimated K(D) values of 7-9 x 10(-)(8) M. Recognition of multiple isoforms of 14-3-3 suggests the targeting of R18 to a structure that is common among 14-3-3 proteins, such as the conserved ligand-binding groove. Indeed, mutations that alter critical residues in the ligand-binding site of 14-3-3 drastically decreased the level of 14-3-3-R18 association. R18 efficiently blocked the binding of 14-3-3 to the kinase Raf-1, a physiological ligand of 14-3-3, and effectively abolished the protective role of 14-3-3 against phosphatase-induced inactivation of Raf-1. The cocrystal structure of R18 in complex with 14-3-3zeta revealed the occupancy of the general binding groove of 14-3-3zeta by R18, explaining the potent inhibitory effect of R18 on 14-3-3-ligand interactions. Such a well-defined peptide will be an effective tool for probing the role of 14-3-3 in various signaling pathways, and may lead to the development of 14-3-3 antagonists with pharmacological applications.  相似文献   

5.
Mechanism of reaction of myeloperoxidase with nitrite   总被引:10,自引:0,他引:10  
Myeloperoxidase (MPO) is a major neutrophil protein and may be involved in the nitration of tyrosine residues observed in a wide range of inflammatory diseases that involve neutrophils and macrophage activation. In order to clarify if nitrite could be a physiological substrate of myeloperoxidase, we investigated the reactions of the ferric enzyme and its redox intermediates, compound I and compound II, with nitrite under pre-steady state conditions by using sequential mixing stopped-flow analysis in the pH range 4-8. At 15 degrees C the rate of formation of the low spin MPO-nitrite complex is (2.5 +/- 0.2) x 10(4) m(-1) s(-1) at pH 7 and (2.2 +/- 0.7) x 10(6) m(-1) s(-1) at pH 5. The dissociation constant of nitrite bound to the native enzyme is 2.3 +/- 0.1 mm at pH 7 and 31.3 +/- 0.5 micrometer at pH 5. Nitrite is oxidized by two one-electron steps in the MPO peroxidase cycle. The second-order rate constant of reduction of compound I to compound II at 15 degrees C is (2.0 +/- 0.2) x 10(6) m(-1) s(-1) at pH 7 and (1.1 +/- 0.2) x 10(7) m(-1) s(-1) at pH 5. The rate constant of reduction of compound II to the ferric native enzyme at 15 degrees C is (5.5 +/- 0.1) x 10(2) m(-1) s(-1) at pH 7 and (8.9 +/- 1.6) x 10(4) m(-1) s(-1) at pH 5. pH dependence studies suggest that both complex formation between the ferric enzyme and nitrite and nitrite oxidation by compounds I and II are controlled by a residue with a pK(a) of (4.3 +/- 0.3). Protonation of this group (which is most likely the distal histidine) is necessary for optimum nitrite binding and oxidation.  相似文献   

6.
The seven highly conserved 14-3-3 proteins expressed in mammalian cells form a complex pattern of homo- and hetero-dimers, which is poorly characterized. Among the 14-3-3 proteins 14-3-3sigma is unique as it has tumor suppressive properties. Expression of 14-3-3sigma is induced by DNA damage in a p53-dependent manner and mediates a cell cycle arrest. Here we show that the 14-3-3sigma protein exclusively forms homodimers when it is ectopically expressed at high levels, whereas ectopic 14-3-3zeta formed heterodimers with the 5 other 14-3-3 isoforms. The x-ray structure of 14-3-3sigma?revealed 5 residues (Ser5, Glu20, Phe25, Q55, Glu80) as candidate determinants of dimerization specificity. Here we converted these amino-acids to residues present in 14-3-3zeta at the analogous positions. Thereby, Ser5, Glu20 and Glu80 were identified as key residues responsible for the selective homodimerization of 14-3-3sigma. Conversion of all 5 candidate residues was sufficient to switch the dimerization pattern of 14-3-3sigma to a pattern which is very similar to that of 14-3-3zeta. In contrast to wildtype 14-3-3sigma this 14-3-3sigma variant and 14-3-3zeta were unable to mediate inhibition of cell proliferation. Therefore, homodimerization by 14-3-3sigma is required for its unique functions among the 7 mammalian 14-3-3 proteins. As inactivation of 14-3-3sigma sensitizes to DNA-damaging drugs, substances designed to interfere with 14-3-3sigma dimerization may be used to inactivate 14-3-3sigma function for cancer therapeutic purposes.  相似文献   

7.
The 14-3-3 proteins are a family of conserved, dimeric proteins that interact with a diverse set of ligands, including molecules involved in cell cycle regulation and apoptosis. It is well-established that 14-3-3 binds to many ligands through phosphoserine motifs. Here we characterize the interaction of 14-3-3 with a nonphosphorylated protein ligand, the ADP-ribosyltransferase Exoenzyme S (ExoS) from Pseudomonas aeruginosa. By using affinity chromatography and surface plasmon resonance, we show that the zeta isoform of 14-3-3 (14-3-3zeta) can directly bind a catalytically active fragment of ExoS in vitro. The interaction between ExoS and 14-3-3zeta is of high affinity, with an equilibrium dissociation constant of 7 nM. ExoS lacks any known 14-3-3 binding motif, but to address the possibility that 14-3-3 binds a noncanonical phosphoserine site, we assayed ExoS for protein-bound phosphate by using mass spectrometry. No detectable phosphoproteins were found. A phosphopeptide ligand of 14-3-3, pS-Raf-259, was capable of inhibiting the binding of 14-3-3 to ExoS, suggesting that phosphorylated and nonphosphorylated ligands may share a common binding site, the conserved amphipathic groove. It is conceivable that 14-3-3 proteins may bind both phosphoserine and nonphosphoserine ligands in cells, possibly allowing kinase-dependent as well as kinase-independent regulation of 14-3-3 binding.  相似文献   

8.
Comparative ultrastructure of the pharynx simplex in turbellaria   总被引:9,自引:1,他引:9  
David A. Doe 《Zoomorphology》1981,97(1-2):133-193
Summary The simple pharynges in thirteen species of Turbellaria in the orders Macrostomida, Haplopharyngida, Catenulida, and Acoela have been studied by electron microscopy. After consideration of the functional aspects of the pharynx simplex, the relationship of the pharynx simplex ultrastructure to the phylogeny of the above mentioned groups is analyzed.The Haplopharyngida and Macrostomida are united as a group by the following characters: a pharynx transition zone of 1–5 circles of insunk cells with modified ciliary rootlets or no cilia, pharynx sensory cells without stereocilia collars and with a variable number of cilia, a prominent nerve ring with more than 30 axons circling the pharynx at the level of the beginning of the pharynx proper distal to the gland ring, 2 or more gland cell types in the pharynx, with at least two layers of muscle present and the longitudinal muscles derived from regular and special body wall circular muscles and a prominent post-oral nerve commissure. This specific arrangement can be distinguished from the other pharynx simplex types and is called the pharynx simplex coronatus.The catenulid pharynx simplex is characterized by the lack of a prominent nerve ring, no prominent post-oral commissure, a transition zone with epidermal type ciliary rootlets, recessed monociliated sensory cells, and one or no type of pharynx gland cell. The Acoela are specialized because of the epidermal type rootlets in the pharynx proper. They also lack a transition zone and a prominent nerve ring and have monociliated sensory cells different from the catenulid type.Ultrastructural characters of the pharynx simplex support the view that the Haplopharyngida-Macrostomida are monophyletic. The more primitive catenulid pharynx probably arose from a common ancestral pool with the Haplopharyngida and Macrostomida, although it does not appear possible presently to establish a clear monophyletic line for these forms. The various pharynx types within the Acoela appear to indicate independent origins with no clear link to the basic pharynx simplex type in the three other orders.Abbreviations Used in Figures a nerve axon - ar accessory rootlet - bb basal body - bn brain-nerve ring commissure - c caudal rootlet - ce centriole - ci cilium - cm circular muscle - cp ciliary pit - cu cuticle - cw cell web - d dictyosome - dp proximal pharynx proper cell - e epidermis - er rough endoplasmic reticulum - f fibrous rod - g gastrodermis - gc gastrodermal gland cell - he heterochromatin - i intercellular matrix - lc lateral nerve cord - lm longitudinal muscle - m mitochondria - mo mouth - mt microtubules - mv microvilli - n nucleus - nr nerve ring - ns neurosecretory granules - p pharynx proper - ph pharynx - po post-oral commissure - r rostral rootlet - rm radial muscle - s sphincter - sc sensory cell - sj septate junction - sr sensory rootlet - t transition zone - u ultrarhabdite - v vertical rootlet - va food vacuole - za zonula adhaerens - 1 type I gland cell - 2 type II gland cell - 3 type III gland cell - 4 type IV gland cell - 5 type V gland cell - 6 type VI gland cell - 7 type VII gland cell  相似文献   

9.
Apoptosis signal-regulating kinase 1 (ASK1) is a critical mediator of apoptotic signaling pathways initiated by a variety of death stimuli. Its activity is tightly controlled by various mechanisms such as covalent modification and protein-protein interaction. One of the proteins that control ASK1 function is 14-3-3zeta, a member of the 14-3-3 protein family. Here, we report that ASK1 is capable of binding to other isoforms of 14-3-3, suggesting that binding ASK1 is a general property of the 14-3-3 family. In support of this notion, mutational analysis revealed that the ASK1/14-3-3 interaction was mediated by the conserved amphipathic groove of 14-3-3 with some residue selectivity. Functionally, expression of various isoforms of 14-3-3 suppressed ASK1-induced apoptosis. To understand how 14-3-3 controls the ASK1 activity, we examined intracellular localization of ASK1 upon 14-3-3 co-expression. We found that 14-3-3 co-expression is correlated with the translocation of ASK1 from the cytoplasm to a perinuclear localization, likely the ER compartment. Consistent with this notion, ASK1(S967A), a 14-3-3 binding defective mutant of ASK, showed no change in intracellular distribution upon 14-3-3 co-expression. These data support a model that 14-3-3 proteins regulate the proapoptotic function of ASK1 in part by controlling its subcellular distribution.  相似文献   

10.
11.
L Zhang  H Wang  S C Masters  B Wang  J T Barbieri  H Fu 《Biochemistry》1999,38(37):12159-12164
Exoenzyme S (ExoS) is a mono-ADP-ribosyltransferase secreted by the opportunistic pathogen Pseudomonas aeruginosa. ExoS requires a eukaryotic factor, the 14-3-3 protein, for enzymatic activity. Here, two aspects of the activation of the ADP-ribosyltransferase activity of ExoS by 14-3-3 proteins are examined. Initial studies showed that several isoforms of 14-3-3, including beta, zeta, eta, sigma, and tau, activated ExoS with similar efficiency. This implicates a conserved structure in 14-3-3 that contributes to the interaction between 14-3-3 and ExoS. One candidate structure is the conserved amphipathic groove that mediates the 14-3-3/Raf-1 interaction. The next series of experiments examined the role of individual amino acids of the amphipathic groove of 14-3-3 zeta in ExoS activation and showed that ExoS activation required the basic residues lining the amphipathic groove of 14-3-3 zeta without extensive involvement of the hydrophobic residues. Strikingly, mutations of Val-176 of 14-3-3 zeta that disrupted its interaction with Raf-1 did not affect the binding and activation of ExoS by 14-3-3. Thus, ExoS selectively employs residues in the Raf-binding groove for its association with 14-3-3 proteins.  相似文献   

12.
Highly branched α-glucan molecules exhibit low digestibility for α-amylase and glucoamylase, and abundant in α-(1→3)-, α-(1→6)-glucosidic linkages and α-(1→6)-linked branch points where another glucosyl chain is initiated through an α-(1→3)-linkage. From a culture supernatant of Paenibacillus sp. PP710, we purified α-glucosidase (AGL) and α-amylase (AMY), which were involved in the production of highly branched α-glucan from maltodextrin. AGL catalyzed the transglucosylation reaction of a glucosyl residue to a nonreducing-end glucosyl residue by α-1,6-, α-1,4-, and α-1,3-linkages. AMY catalyzed the hydrolysis of the α-1,4-linkage and the intermolecular or intramolecular transfer of maltooligosaccharide like cyclodextrin glucanotransferase (CGTase). It also catalyzed the transfer of an α-1,4-glucosyl chain to a C3- or C4-hydroxyl group in the α-1,4- or α-1,6-linked nonreducing-end residue or the α-1,6-linked residue located in the other chains. Hence AMY was regarded as a novel enzyme. We think that the mechanism of formation of highly branched α-glucan from maltodextrin is as follows: α-1,6- and α-1,3-linked residues are generated by the transglucosylation of AGL at the nonreducing ends of glucosyl chains. Then AMY catalyzes the transfer of α-1,4-chains to C3- or C4-hydroxyl groups in the α-1,4- or α-1,6-linked residues generated by AGL. Thus the concerted reactions of both AGL and AMY are necessary to produce the highly branched α-glucan from maltodextrin.  相似文献   

13.
A simple and efficient synthesis of (+/-)-massoilactone (1) as a key substance for the butter and milk flavor was accomplished from n-hexanal in only a few steps. Application of its racemic synthesis enabled natural (R)-(-)- and unnatural (S)-(+)-massoilactone (1a, 1b) to be synthesized by starting from commercially available (R)-(+)-1,2-epoxyheptane (5).  相似文献   

14.
Comparison of mechanical properties of four large, wave-exposed seaweeds   总被引:2,自引:0,他引:2  
Seaweeds have a simple structural design compared to most terrestrial plants. Nonetheless, some species have adapted to the severe mechanical conditions of the surf zone. The material properties of either tissue sections or the whole stipe of four wave-exposed seaweeds, Durvillaea antarctica, D. willana, Laminaria digitata, and L. hyperborea, were tested in tension, bending, and torsion. Durvillaea has a very low modulus of elasticity in tension (E(tension) = 3-7 MN·m(-2)) and in bending (E(bending) = 9-12 MN · m(-2)), torsion modulus (G = 0.3 MN · m(-2)) and strength (σ(b)rk = 1-2 MN · m(-2)), combining a compliable and twistable stipe "material" with a comparatively high breaking strain (ε(brk) = 0.4-0.6). In comparison, the smaller stipes of Laminaria have a higher modulus of elasticity in tension (E(tension) = 6-28 MN·m(-2)) and in bending (E(bending) = 84-109 MN·m(-2)), similar strength (σ(brk) = 1-3 MN·m(-2)), and a higher torsion modulus (G = 0.7-10 MN·m(-2)), combined with a lower breaking strain (ε(brk) = 0.2-0.3) than Durvillaea. Time-dependent, viscoelastic reactions were investigated with cycling tests. The tested species dissipated 42-52% of the loading energy in tension through plastic-viscoelastic processes, a finding that bears important ecological implications. Overall, there seems to be no correlation between single material properties and the size or habitat position of the tested seaweed species.  相似文献   

15.
Experiments on an isolated spinal cord of rats aged 9-15 days have shown that harmane (10(-7)-10(-5) M) enhances GABA-induced (1.10(-4) M) depolarization of primary afferents and hyperpolarization of motoneurones. The GABA-potentiating action of harmane on primary afferents is depicted by a bell-shaped curve with a maximum at 10(-5) M. The action is more pronounced the higher the concentration of chlorine ions in the medium. Harmane (10(-6)-10(-4) M) enhances spontaneous neuronal activity and evoked synaptic potentials (mono- and polysynaptic potentials of the ventral and dorsal roots) at the concentrations at which it exerts a direct depolarizing action on motoneurones and primary afferents. At higher concentrations the stimulant activity of harmane (10(-5)-10(-4) M) counteracts its GABA-potentiating effects.  相似文献   

16.
DNAs of lambda T4 recombinants 596-27 (genes 50-5), 596-30 (genes 50-8), 596-29 (genes 50-12), 591-16 (genes 6-8), 591-1 (genes 9-12), 596-13 (genes 13-16), 596-17 (genes 18-20) and 596-11 (genes 25-29) were mapped with the use of EcoRI, HindIII, SmaI, SalI and BamHI restriction enzymes. T4 dcDNA was digested with HindIII restriction endonuclease and resulting fragments were cloned into HindIII lambda vector 761. The recombinants 761-7, 761-17, 761-19, 761-24, 761-44, 761-50, 761-55 contained the region of genes 25-48 and 761-42, 761-26 and 761-16 contained a single HindIII-fragment with genes 6-12 in both orientations. Data obtained with the DNA of the latter recombinants allowed to show the correctness of the map established earlier which did not contain a full set of overlapping sequences. As a result of the experiments reported, the position of EcoRI and HindIII recognition sites in the region of genes 50-20 and 25-48 was determined and in the region of genes 25-48 BglII and XhoI restriction sites were mapped. The location of a single BamHI restriction site in the region of gene 8 was also established.  相似文献   

17.
Maintenance of physiologic phosphate balance is of crucial biological importance, as it is fundamental to cellular function, energy metabolism, and skeletal mineralization. Fibroblast growth factor-23 (FGF-23) is a master regulator of phosphate homeostasis, but the molecular mechanism of such regulation is not yet completely understood. Targeted disruption of the Fgf-23 gene in mice (Fgf-23-/-) elicits hyperphosphatemia, and an increase in renal sodium/phosphate co-transporter 2a (NaPi2a) protein abundance. To elucidate the pathophysiological role of augmented renal proximal tubular expression of NaPi2a in Fgf-23-/- mice and to examine serum phosphate-independent functions of Fgf23 in bone, we generated a new mouse line deficient in both Fgf-23 and NaPi2a genes, and determined the effect of genomic ablation of NaPi2a from Fgf-23-/- mice on phosphate homeostasis and skeletal mineralization. Fgf-23-/-/NaPi2a-/- double mutant mice are viable and exhibit normal physical activities when compared to Fgf-23-/- animals. Biochemical analyses show that ablation of NaPi2a from Fgf-23-/- mice reversed hyperphosphatemia to hypophosphatemia by 6 weeks of age. Surprisingly, despite the complete reversal of serum phosphate levels in Fgf-23-/-/NaPi2a-/-, their skeletal phenotype still resembles the one of Fgf23-/- animals. The results of this study provide the first genetic evidence of an in vivo pathologic role of NaPi2a in regulating abnormal phosphate homeostasis in Fgf-23-/- mice by deletion of both NaPi2a and Fgf-23 genes in the same animal. The persistence of the skeletal anomalies in double mutants suggests that Fgf-23 affects bone mineralization independently of systemic phosphate homeostasis. Finally, our data support (1) that regulation of phosphate homeostasis is a systemic effect of Fgf-23, while (2) skeletal mineralization and chondrocyte differentiation appear to be effects of Fgf-23 that are independent of phosphate homeostasis.  相似文献   

18.
19.
The aim was to assess heterosis in a set of 16 summer-squash hybrids, and evaluate the combining capacity of the respective parental lines, which differed as to the degree of parthenocarpy and resistance to PRSV-W (Papaya Ringspot Virus-Watermelon strain). The hybrids were obtained using a partial diallel cross design (4 × 4). The lines of parental group I were 1 = ABX-037G-77-03-05-01-01-bulk, 2 = ABX-037G-77-03-05-03-10-bulk, 3 = ABX-037G-77-03-05-01-04-bulk and 4 = ABX-037G-77-03-05-05-01-bulk, and of group II, 1' = ABX-037G-77-03-05-04-08-bulk, 2' = ABX-037G-77-03-05-02-11-bulk, 3' = Clarice and 4' = Caserta. The 16 hybrids and eight parental lines were evaluated for PRSV-W resistance, parthenocarpic expression and yield in randomized complete-block designs, with three replications. Parthenocarpy and the resistance to PRSV-W were rated by means of a scale from 1 to 5, where 1 = non-parthenocarpic or high resistance to PRSV-W, and 5 = parthenocarpic or high susceptibility to PRSV-W. Both additive and non-additive gene effects were important in the expression of parthenocarpy and resistance to PRSV-W. Whereas estimates of heterosis in parthenocarpy usually tended towards a higher degree, resistance to PRSV-W was towards higher susceptibility. At least one F(1) hybrid was identified with a satisfactory degree of parthenocarpy, resistance to PRSV-W and high fruit-yield.  相似文献   

20.
Bidwai AK  Ok EY  Erman JE 《Biochemistry》2008,47(39):10458-10470
The spectrum of the ferric heme domain of the direct oxygen sensor protein from Escherichia coli ( EcDosH) has been measured between pH 3.0 and 12.6. EcDosH undergoes acid denaturation with an apparent p K a of 4.24 +/- 0.05 and a Hill coefficient of 3.1 +/- 0.6 and reversible alkaline denaturation with a p K a of 9.86 +/- 0.04 and a Hill coefficient of 1.1 +/- 0.1. Cyanide binding to EcDosH has been investigated between pH 4 and 11. The EcDosH-cyanide complex is most stable at pH 9 with a K D of 0.29 +/- 0.06 microM. The kinetics of cyanide binding are monophasic between pH 4 and 8. At pH >or=8.5, the reaction is biphasic with the fast phase dependent upon the cyanide concentration and the slow phase independent of cyanide. The slow phase is attributed to conversion of denatured EcDosH to the native state, with a pH-independent rate of 0.052 +/- 0.006 s (-1). The apparent association rate constant for cyanide binding to EcDosH increases from 3.6 +/- 0.1 M (-1) s (-1) at pH 4 to 520 +/- 20 M (-1) s (-1) at pH 11. The dissociation rate constant averages (8.6 +/- 1.3) x 10 (-5) s (-1) between pH 5 and 9, increasing to (1.4 +/- 0.1) x 10 (-3) s (-1) at pH 4 and (2.5 +/- 0.1) x 10 (-3) s (-1) at pH 12.2. The mechanism of cyanide binding is consistent with preferential binding of the cyanide anion to native EcDosH. The reactions of imidazole and H 2O 2 with ferric EcDosH were also investigated and show little reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号